D Sun

microsystems

Runtime Environment Specification

Java Card™ Platform, Version 2.2.2

Sun Microsystems, Inc.
WWW.sun.com

3-15-06

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
Earticular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
ttp:/ /www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Java Card, Java Developer Connection, Javadoc, JDK, JVM, J2ME, NetBeans and J2SE are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIXis a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION ISPROVIDED "ASIS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

D wen 9

Adobe PostScript

Contents

3.

Preface xiii

Introduction 1-1

Lifetime of the Java Card Virtual Machine 2-1

Java Card Applet Lifetime 3-1

3.1
3.2
3.3
34
3.5
3.6

install Method 3-1
select Method 3-2
process Method 3-3
deselect Method(s) 3-3
uninstall Method 3-4
Power Loss and Reset 3-4

3.6.1 Concurrent Operations Over Multiple Interfaces 3-5

Logical Channels and Applet Selection 4-1

4.1

42

Default Applets 4-4
41.1 Card Reset Behavior 4-5
4.1.2 Proximity Card (PICC) Activation Behavior 4-5

4.1.3 Default Applet Selection Behavior on Opening a New Channel
6

Multiselectable Applets 4-6

43 Forwarding APDU Commands To a Logical Channel 4-9
44 Opening and Closing Logical Channels 4-11
441 MANAGE CHANNEL Command Processing 4-12
45 Applet Selection 4-13
451 Applet Selection with MANAGE CHANNEL OPEN 4-13
452 Applet Selection with SELECT FILE 4-15
4.6 Applet Deselection 4-17
461 MANAGE CHANNEL CLOSE Command 4-18
4.7 Other Command Processing 4-19

5. Transient Objects 5-1
5.1 Events That Clear Transient Objects 5-2

6. Applet Isolation and Object Sharing 6-1
6.1 Applet Firewall 6-1
6.1.1 Firewall Protection 6-1
6.1.2 Contexts and Context Switching 6-2
6.1.2.1 Active Contexts in the VM 6-3
6.1.2.2 Context Switching in the VM 64
6.1.3 Object Ownership 6-4
6.1.4 Object Access 6-6
6.1.5 Transient Objects and Contexts 6-6
6.1.6 Static Fields and Methods 6-7
6.1.6.1 Optional Static Access Checks 6-7
6.2 Object Access Across Contexts 6-8
6.2.1 Java Card RE Entry Point Objects 6-8
6.2.2 Global Arrays 6-9
6.2.3 Java Card RE Privileges 6-10
6.2.4 Shareable Interfaces 6-10

iv Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

6.2.4.1 Server Applet A Builds a Shareable Interface Object 6—
11

6.24.2 Client Applet B Obtains the Shareable Interface Object
6-11

6.2.4.3 Client Applet B Requests Services from Applet A 6-12
6.2.5 Determining the Previous Context 6-13

6.2.5.1 Java Card RE Context 6-13
6.2.6 Shareable Interface Details 6-13

6.2.6.1 Java Card API Shareable Interface 6-13
6.2.7 Obtaining Shareable Interface Objects 6-14

6.2.7.1 Applet.getShareableInterfaceObject (AID,
byte) Method 6-14

6.2.7.2 JCSystem.getAppletShareableInterfaceObject
Method 6-15

6.2.8 Class and Object Access Behavior 6-15
6.2.8.1 Accessing Static Class Fields 6-16
6.2.8.2 Accessing Array Objects 6-16
6.2.8.3 Accessing Class Instance Object Fields 6-17
6.2.8.4 Accessing Class Instance Object Methods 6-17
6.2.8.5 Accessing Standard Interface Methods 6-17
6.2.8.6 Accessing Shareable Interface Methods 6-18
6.2.8.7 Throwing Exception Objects 6-18
6.2.8.8 Accessing Classes 6-18
6.2.8.9 Accessing Standard Interfaces 6-19
6.2.8.10 Accessing Shareable Interfaces 6-19
6.2.8.11 Accessing Array Object Methods 6-19

7. Transactions and Atomicity 7-1
71 Atomicity 7-1

7.2 Transactions 7-2

Contents v

Vi

73
7.4
7.5
7.6

7.7
7.8
7.9

Transaction Duration 7-2

Nested Transactions 7-3

Tear or Reset Transaction Failure 7-3

Aborting a Transaction 7-3

7.6.1
7.6.2
7.6.3

Programmatic Abortion 7-4

Abortion by the Java Card RE 74

Cleanup Responsibilities of the Java Card RE 74

Transient Objects and Global Arrays 7-5

Commit Capacity 7-5

Context Switching 7-5

8. Remote Method Invocation Service 8-1

Java Card Platform RMI 8-1

8.1

8.2

8.3

8.1.1
8.1.1.1
8.1.1.2
8.1.1.3
RMI Messages
8.2.1
8.2.2

Remote Objects 8-1

Parameters and Return Values 8-2
Exceptions 8-2

Functional Limitations 8-2

8-3

Applet Selection 8-3

Method Invocation 8-4

Data Formats

8.3.1
8.3.2
8.3.3
8.34

8.3.5

8—4

Remote Object Identifier 8-5

Remote Object Reference Descriptor 8-5
Method Identifier 8-7

Parameter Encoding 8-8

8.3.4.1
8.34.2

Primitive Data Type Parameter Encoding 8-8

Array Parameter Encoding 8-8

Return Value Encoding 8-9

8.3.5.1

Normal Response Encoding 8-9

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

8.4

8.5

8.3.5.2 Exception Response Encoding 8-10
8.3.5.3 Error Response Encoding 8-11
APDU Command Formats 8-11
8.4.1 SELECT FILE Command 8-12
8.4.2 INVOKE Command 8-14
RMIService Class 8-14
8.5.1 setInvokeInstructionByte Method 8-15

8.5.2 processCommand Method 8-15

API Topics 9-1

9.1
9.2
9.3
9.4

9.5
9.6
9.7

Resource Use Within the API 9-1
Exceptions Thrown by API Classes 9-1
Transactions Within the API 9-2
aApPDU Class 9-2
9.4.1 T=0 Specifics for Outgoing Data Transfers 9-2
94.1.1 Constrained Transfers With No Chaining 9-3
9.41.2 Regular Output Transfers 9-4
9.4.1.3 Additional T=0 Requirements 9-5
9.42 T=1 Specifics for Outgoing Data Transfers 9-5
9421 Constrained Transfers With No Chaining 9-5
9.422 Regular Output Transfers 9-6
9.43 T=1 Specifics for Incoming Data Transfers 9-7
9.4.3.1 Incoming Transfers Using Chaining 9-7
9.44 Extended Length APDU Specifics 9-7
9441 Extended Length API Semantics 9-7
Security and Crypto Packages 9-9
JCSystem Class 9-10

Optional Extension Packages 9-10

Contents

vii

10. Virtual Machine Topics 10-1
10.1 Resource Failures 10-1

10.2 Security Violations 10-1

11. Applet Installation and Deletion 11-1
11.1 The Installer 11-2
11.1.1 Installer Implementation 11-2
11.1.2 Installer AID 11-3
11.1.3 Installer APDUs 11-3
11.1.4 CAP File Versions 11-3
11.1.5 Installer Behavior 11-4
11.1.6 Installer Privileges 11-5
11.2 The Newly Installed Applet 11-5
11.2.1 Installation Parameters 11-6
11.3 The Applet Deletion Manager 11-7
11.3.1 Applet Deletion Manager Implementation 11-7
11.3.2 Applet Deletion Manager AID 11-8
11.3.3 Applet Deletion Manager APDUs 11-8
11.3.4 Applet Deletion Manager Behavior 11-8
11.3.4.1 Applet Instance Deletion 11-9
11.3.4.2 Applet/Library Package Deletion 11-11

11.3.4.3 Applet Package and Contained Instances Deletion 11—
12

11.3.5 Applet Deletion Manager Privileges 11-13

12. API Constants 12-1
12.1 Class javacard. framework.APDU 12-1
12.2 Class javacard. framework.APDUException 12-2
12.3 Interface javacard. framework.IS07816 12-2

12.4 Class javacard. framework.JCSystem 12-3

viii Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

12.5 Class javacard. framework.PINException 12-3

12.6 Class javacard. framework.SystemException 12-4
12.7 Class javacard. framework.TransactionException 12-4
12.8 Class javacard. framework.service.Dispatcher 12-4
129 C(lass javacard. framework.service.RMIService 124
12.10 Class javacard. framework.service.ServiceException 12-5
12.11 Class javacard.security.Checksum 12-5

12.12 Class javacard.security.CryptoException 12-5
12.13 Class javacard.security.KeyAgreement 12-5

12.14 Class javacard.security.KeyBuilder 12-6

12.15 Class javacard.security.KeyPair 12-7

12.16 Class javacard.security.MessageDigest 12-7

12.17 Class javacard.security.RandomData 12-8

12.18 Class javacard.security.Signature 12-8

12.19 Class javacardx.biometry.BioBuilder 12-9

12.20 Class javacardx.biometry.BioException 12-10

12.21 Class javacardx.biometry.BioTemplate 12-10

12.22 Class javacardx.crypto.Cipher 12-10

12.23 Class javacardx.external .ExternalExeption 12-11
12.24 Class javacardx.external .Memory 12-11

12.25 Class javacardx. framework.math.BigNumber 12-11
12.26 Class javacardx. framework.tlv.BERTag 12-11

12.27 Class javacardx. framework. tlv.TLVException 12-12

12.28 Class javacardx. framework.util.UtilException 12-12
Glossary Glossary-1

Index Index-1

Contents

x Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

Figures

FIGURE 4-1

FIGURE 4-2

FIGURE 4-3

FIGURE 6-1

FIGURE 6-2

Logical Channels for Distinct Applets 4-3

Different Applet Instances in Same Package 4-8

Same Applet Instance Selected on Multiple Logical Channels 4-8
Contexts Within the Java Card Platform’s Object System 6-3
Context Switching and Object Access 6-5

xi

xii Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

Preface

Java Card™ technology combines a portion of the Java™ programming language
with a runtime environment optimized for smart cards and related, small-memory
embedded devices. The goal of Java Card technology is to bring many of the benefits
of the Java programming language to the resource-constrained world of smart cards.

This document is a specification of the Java Card Platform, Version 2.2.2, Runtime
Environment (Java Card Runtime Environment or Java Card RE). A vendor of a Java
Card technology-enabled device provides an implementation of the Java Card RE. A
Java Card RE implementation within the context of this specification refers to a
vendor’s implementation of the virtual machine (VM) for the Java Card platform
(Java Card virtual machine or Java Card VM), the Java Card Application
Programming Interface (API), or other component, based on the Java Card
technology specifications. A “reference implementation” is an implementation
produced by Sun Microsystems, Inc. Application software written for the Java Card
platform is referred to as a Java Card technology-based applet (Java Card applet or
card applet).

Who Should Use This Specification

This specification is intended to assist implementers of the Java Card RE in creating
an implementation, developing a specification to extend the Java Card technology
specifications, or in creating an extension to the runtime environment for the Java
Card platform. This specification is also intended for Java Card applet developers
who want a greater understanding of the Java Card technology specifications.

Xiii

Before You Read This Specification

Before reading this guide, you should be familiar with the Java programming
language, the other Java Card technology specifications, and smart card technology.
A good resource for becoming familiar with Java technology and Java Card
technology is the Sun Microsystems, Inc. web site, located at

http://java.sun.com

How This Specification Is Organized

Chapter 1, “Introduction,” gives an overview of the information contained in this
specification.

Chapter 2, “Lifetime of the Java Card Virtual Machine,” defines the lifetime of the
Java Card virtual machine.

Chapter 3, “Java Card Applet Lifetime,” defines the lifetime of an applet.

Chapter 4, “Logical Channels and Applet Selection,” describes how the Java Card RE
handles applet selection.

Chapter 5, “Transient Objects,” describes the properties of transient objects.

Chapter 6, “Applet Isolation and Object Sharing,” describes applet isolation and
object sharing.

Chapter 7, “Transactions and Atomicity,” describes the functionality of atomicity and
transactions.

Chapter 8, “Remote Method Invocation Service,” describes the server-side (card-
side) functionality of the Remote Method Invocation (RMI) feature of Java Card
Platform, Version 2.2.2.

Chapter 9, “API Topics,” describes API functionality required of a Java Card RE but
not completely specified in the Application Programming Interface, Java Card Platform,
Version 2.2.2.

Chapter 10, “Virtual Machine Topics,” describes virtual machine resource failures
and security violations.

Chapter 11, “Applet Installation and Deletion,” provides an overview of the Applet
Installer and Java Card RE required behavior.

xiv Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

http://java.sun.com
http://java.sun.com

Chapter 12, “API Constants,” provides the numeric value of constants that are not
specified in the Application Programming Interface, Java Card Platform, Version 2.2.2.

“Glossary,” provides definitions of selected terms used in this specification.

Related Books

References to various documents or products are made in this guide, Have the
following documents available:

Application Programming Interface for the Java Card Platform, Version 2.2.2.
Virtual Machine Specification for the Java Card Platform, Version 2.2.2.

The Java Language Specification by James Gosling, Bill Joy, and Guy L. Steele
(Addison-Wesley, 1996).

The Java Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm
and Frank Yellin (Addison-Wesley, 1999).

The Java Remote Method Invocation Specification, Sun Microsystems, Inc.
(http://java.sun.com/products/jdk/rmi).

The Java Class Libraries: An Annotated Reference, Second Edition (Java Series) by
Patrick Chan, Rosanna Lee and Doug Kramer (Addison-Wesley, 1999).

ISO 7816 Specification Parts 1-6. (http://www.iso.org)

EMYV 96 Integrated Circuit Card Specification for Payment Systems Version 3.0.
EMYV 2000 Integrated Circuit Card Specification for Payment Systems Version 4.0.
(http://www.emvco.com)

Preface xv

http://java.sun.com/products/jdk/rmi
http://www.iso.org
http://java.sun.com/products/jdk/rmi
http://www.iso.org
http://www.emvco.com

Typographic Conventions

TABLE P-1
Typeface Meaning Examples
AaBbCcl123 The names of commands, files, Edit your . login file.
and directories; on-screen Use 1s -a to list all files.
computer output % You have mail.
AaBbCc123 What you type, when % su
contrasted with on-screen Password:
computer output
AaBbCc123 Book titles, new words or Read Chapter 6 in the User’s Guide.

terms, words to be emphasized

Command-line variable;
replace with a real name or
value

These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

Accessing Sun Documentation Online

Access Java platform technical documentation Java Developer Connection™
program web site at

http://developer.java.sun.com/developer/infodocs

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments
and suggestions. You can email your comments to us at docs@java.sun.com.

xvi Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

http://developer.java.sun.com/developer/infodocs/

CHAPTER 1

Introduction

The runtime environment (RE) for the Java Card Platform, Version 2.2.2, contains the
Java Card virtual machine (VM), the Java Card Application Programming Interface
(API) classes (and industry-specific extensions), and support services.

This document, the Runtime Environment Specification for the Java Card Platform,
Version 2.2.2), specifies the Java Card RE functionality required by the Java Card
technology. Any implementation of Java Card technology shall provide this
necessary behavior and environment.

11

1-2 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

CHAPTER 2

Lifetime of the Java Card Virtual
Machine

In a PC or workstation, the Java virtual machine! runs as an operating system
process. When the OS process is terminated, the Java programming language
applications and their objects are automatically destroyed.

In Java Card technology, the execution lifetime of the virtual machine (VM) is the
lifetime of the card. Most of the information stored on a card shall be preserved even
when power is removed from the card. Persistent memory technology (such as
EEPROM) enables a smart card to store information when power is removed.
Because the VM and the objects created on the card are used to represent application
information that is persistent, the Java Card VM appears to run forever. When
power is removed, the VM only stops temporarily. When the card is next reset, the
VM starts again and recovers its previous object heap from persistent storage.

Aside from its persistent nature, the Java Card virtual machine is just like the Java
virtual machine.

The card initialization time is the time after masking, and prior to the time of card
personalization and issuance. At the time of card initialization, the Java Card RE is
initialized. The framework objects created by the Java Card RE exist for the lifetime
of the virtual machine. Because the execution lifetime of the virtual machine and the
Java Card RE framework span Card Acceptance Device (CAD or card reader)
sessions of the card, the lifetimes of objects created by applets also span CAD
sessions. Objects that have this property are called persistent objects. Card sessions
are those periods when the card is inserted into the CAD, powered up, and
exchanging streams of APDUs with the CAD. The card session ends when the card
is removed from the CAD.

1. The terms "Java Virtual Machine" and "JVM" mean a Virtual Machine for the Java platform.

Note — The acronym CAD is used here and throughout this specification to refer to
both types of card readers - the conventional Card Acceptance Device (CAD) for
contacted I/0 interfaces and the Proximity Coupling Device (PCD) for contactless
interfaces.

The Java Card RE implementer shall make an object persistent when:

m The Applet.register method is called. The Java Card RE stores a reference to
the instance of the applet object. The Java Card RE implementer shall ensure that
instances of class applet are persistent.

m A reference to an object is stored in a field of any other persistent object or in a
class’s static field. This requirement stems from the need to preserve the integrity
of the Java Card RE’s internal data structures.

2-2 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

CHAPTER 3

Java Card Applet Lifetime

For the purposes of this specification, applet refers to an applet written for the Java
Card platform. An applet instance’s lifetime begins when it is successfully registered
with the Java Card RE via the Applet.register method. Applets registered with
the Applet.register method exist until deleted by the Applet Deletion Manager
(Section 11.3, “The Applet Deletion Manager” on page 11-7). The Java Card RE
initiates interactions with the applet via the applet’s public methods install,
select, deselect, and process. An applet shall implement the static

install (byte[], short, byte) method. If the install (byte[], short,
byte) method is not implemented, the applet’s objects cannot be created or
initialized. A Java Card RE implementation shall call an applet’s install, select,
deselect, and process methods as described below.

When the applet is installed on the smart card, the static install (bytel[],
short, byte) method is called once by the Java Card RE for each applet instance
created. The Java Card RE shall not call the applet’s constructor directly.

3.1

install Method

When the install (byte[], short, byte) method is called, the applet instance
does not yet exist. The main task of the install method within the applet is to
create an instance of the Applet subclass using its constructor, and to register the
instance. All other objects that the applet needs during its lifetime can be created as
is feasible. Any other preparations necessary for the applet to be selected and
accessed by a CAD also can be done as is feasible. The install method obtains
initialization parameters from the contents of the incoming byte array parameter.

Typically, an applet creates various objects, initializes them with predefined values,
sets some internal state variables, and calls either the Applet.register () method
or the Applet.register (byte[], short, byte) method to specify the AID

(applet IDentifier as defined in ISO 7816-5) to be used to select it. This installation is

3-1

considered successful when the call to the Applet.register method completes
without an exception. The installation is deemed unsuccessful if the install
method does not call the Applet.register method, or if an exception is thrown
from within the install method prior to the Applet.register method being
called, or if the Applet.register method throws an exception. If the installation is
unsuccessful, the Java Card RE shall perform all cleanup when it regains control.
That is, all conditional updates to persistent storage shall be returned to the state
they had prior to calling the install method. If the installation is successful, the
Java Card RE can mark the applet as available for selection.

Only one applet instance can be successfully registered each time the Java Card RE
calls the Applet.install method.

3.2 select Method

Applets remain in a suspended state until they are explicitly selected. Selection
occurs when the Java Card RE receives a SELECT FILE APDU command in which
the name data matches the AID of the applet. Applet selection can also occur on a
MANAGE CHANNEL OPEN command. Selection causes an applet to become the
currently selected applet. For more details, see Section 4.5, “Applet Selection” on
page 4-13.

Prior to calling select, the Java Card RE shall deselect the previously selected
applet. The Java Card RE indicates this to the applet by invoking the applet’s
deselect method or, if concurrently selected on more than one logical channel, its
MultiSelectable.deselect method (for more details, see Section 4.2,
“Multiselectable Applets” on page 4-6).

The Java Card RE informs the applet of selection by invoking its select method or,
if being concurrently selected on more than one logical channel, its
MultiSelectable.select method (for more details, see Section 4.2,
“Multiselectable Applets” on page 4-6).

The applet may decline to be selected by returning false from the call to the
select method or by throwing an exception. If the applet returns true, the actual
SELECT FILE APDU command is supplied to the applet in the subsequent call to its
process method, so that the applet can examine the APDU contents. The applet can
process the SELECT FILE APDU command exactly like it processes any other APDU
command. It can respond to the SELECT FILE APDU with data (see Section 3.3,
“process Method” on page 3-3 for details), or it can flag errors by throwing an
ISOException with the appropriate returned status word. The status word and
optional response data are returned to the CAD.

3-2 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

The Applet.selectingApplet method shall return true when called during the
select method. The Applet.selectingApplet method continues to return true
during the subsequent process method, which is called to process the SELECT
FILE APDU command.

If the applet declines to be selected, the Java Card RE returns an APDU response
status word of IS07816.SW_APPLET_SELECT_FAILED to the CAD. Upon selection
failure, the Java Card RE state is set to indicate that no applet is selected. See
Section 4.5, “Applet Selection” on page 4-13 for more details.

After successful selection, all subsequent APDUs directed to the assigned logical
channel are delivered to the currently selected applet via the process method.

3.3

process Method

All APDUs are received by the Java Card RE and preprocessed. All commands,
except for the MANAGE CHANNEL command result in an instance of the APDU
class containing the command being passed to the process (APDU) method of the
currently selected applet.

Note — A SELECT FILE APDU command might cause a change in the currently
selected applet prior to the call to the process method. The actual change occurs
before the call to the select method.

On normal return, the Java Card RE automatically appends 0x9000 as the
completion response status word to any data already sent by the applet.

At any time during process, the applet may throw an ISOException with an
appropriate status word, in which case the Java Card RE catches the exception and
returns the status word to the CAD.

If any other exception is thrown during process, the Java Card RE catches the
exception and returns the status word IS07816 . SW_UNKNOWN to the CAD.

3.4

deselect Method(s)

When the Java Card RE receives a SELECT FILE APDU command in which the name
matches the AID of an applet, the Java Card RE calls the Applet .deselect method
of the currently selected applet or, if concurrently selected on more than one logical
channel, its MultiSelectable.deselect method. For more details see Section 4.2,

Chapter 3 Java Card Applet Lifetime 3-3

“Multiselectable Applets” on page 4-6. Applet deselection may also be requested by
the MANAGE CHANNEL CLOSE command. For more details, see Section 4.6,
“Applet Deselection” on page 4-17.

The deselect method allows the applet to perform any cleanup operations that
may be required to allow some other applet to execute.

The Applet.selectingApplet method shall return false when called during the
deselect method. Exceptions thrown by the deselect method are caught by the
Java Card RE, but the applet is deselected.

3.5

uninstall Method

This method is defined in the javacard. framework.AppletEvent interface.
When the Java Card RE is preparing to delete the applet instance, the Java Card RE
calls this method, if implemented by the applet, to inform it of the deletion request.
Upon return from this method, the Java Card RE checks for reference dependencies
before deleting the applet instance.

This method may be called multiple times, once for each applet deletion attempt.

3.6

3-4

Power Loss and Reset

Power loss occurs under one of the following conditions:

m The card is withdrawn from the CAD.

m When operating in contactless-only mode, the card loses carrier energy from the
radio frequency (RF) field and enters the POWER OFF state as defined in the ISO
14443 Specification Parts 1-4.

m When operating in contactless-only mode, the card receives a Supervisory block
(S-block) DESELECT command and enters the HALT state as defined in the ISO
14443 Specification Parts 1-4.

m A mechanical or electrical failure occurs on the card.

When power is reapplied to the card and on card reset (warm or cold) the Java Card
RE shall ensure that:

m Transient data is reset to the default value.

m The transaction in progress, if any, when power was lost (or reset occurred) is
aborted.

m All applet instances that were active when power was lost (or reset occurred)
become implicitly deselected. In this case the deselect method is not called.

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

3.6.1

m If the Java Card RE implements default applet selection (see Section 4.1, “Default
Applets” on page 4-4), the default applet is selected as the active applet instance
for the basic logical channel (channel 0), and the default applet’s select method
is called. Otherwise, the Java Card RE sets its state to indicate that no applet is
active on the basic logical channel.

Concurrent Operations Over Multiple Interfaces

A Java Card technology compliant proximity contactless card operates in the
ACTIVE state and processes commands defined in the ISO 14443 Specification Parts
1-4.

The Supervisory block (S-block) DESELECT command results in the proximity card
entering the HALT state.

A loss of RF field results in the proximity card entering the POWER OFF state.

On a card which is concurrently operating over both the contacted as well as the
contactless I/O interfaces, prior to entering the HALT state or POWER OFF state, the
Java Card RE must ensure the following:

m The transaction in progress in the currently selected applet instance executing on
a logical channel on the contactless I/O interface, if any, when the S-block
DESELECT command is received, or when the loss of RF field occurs, is aborted.

m FEach applet instance that was active on a logical channel over the contactless I/O
interface when the S-block DESELECT command is received, or when the loss of
RF field occurs, becomes implicitly deselected. In this case the deselect method
is not called.

m All the logical channels open on the contactless I/O interface are implicitly
closed.

m Transient data associated with each applet instance that was active on a logical
channel over the contactless I/O interface and that does not have an applet
instance from the same package active on any logical channel over the contacted
I/0 interface when the S-block DESELECT command is received, or when the
loss of RF field occurs, is reset to the default value.

Note — To establish a card session over both contacted and contactless interfaces
concurrently, the CAD must initiate the contacted session first. A power loss or card
reset on the contacted interface results in a card tear and card reset event even if a
contactless session is in progress. An RF signal loss on the contactless interface must
not affect an ongoing contacted session.

Chapter 3 Java Card Applet Lifetime 3-5

3-6 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

CHAPTER 4

Logical Channels and Applet
Selection

Java Card platform, version 2.2.2, provides support for logical channels: The ability
to allow a terminal to open up to twenty sessions into the smart card over any I/0O
interface, one session per logical channel. Logical channels functionality is described
in detail in the ISO 7816-4:2005 Specification.

Cards receive requests for service from the CAD in the form of APDUs. The SELECT
FILE APDU and MANAGE CHANNEL OPEN APDU are used by the Java Card RE
to designate the active applet instance for a logical channel session. Once selected, an
applet instance receives all subsequent APDUs dispatched to that logical channel,
until the applet instance becomes deselected.

Some cards support only the contacted I/O interface conforming to ISO 7816
specifications, and some support only the contactless I/O interface based on the ISO
14443 specifications. Yet others are able to support both types of I/O interfaces.
Logical channel sessions as described in this chapter may be supported over either
interface. In addition, a card may be able to sustain logical channel sessions over
both interfaces simultaneously.

An implementation may support between 1 and 20 logical channels over the
contacted I/0O interface. Similarly, an implementation may support between 1 and 20
logical channels over the contactless I/O interface. When both 1/0 interfaces are
concurrently active, the number of logical channels supported on each of the two
interfaces is also implementation specific.

Note — To establish a card session over both contacted and contactless interfaces
concurrently, the CAD must initiate the contacted session first. A power loss or card
reset on the contacted interface results in a card tear and card reset event even if a
contactless session is in progress. An RF signal loss on the contactless interface must
not affect an ongoing contacted session.

4-1

4-2

The Java Card RE processes APDUs sequentially whether received over the same
I/0 interface or over two different I/O interfaces. The I/O subsystem must present
concurrently received APDUs to the Java Card RE command dispatcher sequentially.
The arbitration required to make concurrently received APDU commands
sequential, as well as the mechanisms used to ensure proper synchronization with
the CAD (for contact) and with the proximity coupling device, PCD (for contactless),
are not specified in this specification. The I/O subsystem must ensure that APDU
commands received over the contactless I/0 interface are given higher priority, but
without causing a timeout on any concurrently received APDU command over the
contacted I/0 interface. The algorithm used for this purpose is not specified in this
specification.

A new applet written for version 2.2.* of the Java Card platform can be designed to
take advantage of logical channel support. Such an applet can take advantage of
multi-session functionality, can be concurrently selected alongside another applet on
a different logical channel, and even be selected multiple times simultaneously on
different logical channels. As shown in FIGURE 4-1, an implementation may support
from one to twenty logical channels on each I/O interface, each with its own distinct
CLEAR_ON_DESELECT memory segment.

Only one logical channel, logical channel number 0 (the basic logical channel) becomes
active on the contacted I/O interface following a card reset. Similarly, only one
logical channel, logical 0 (the basic logical channel) becomes active on the contactless
I/0 interface following a PICC activation sequence. A MANAGE CHANNEL APDU
command may be issued on this logical channel to instruct the card to open a new
logical channel. Applet instances can be selected on different logical channels using
the SELECT FILE APDU command, just as they would in a single logical channel
environment. The MANAGE CHANNEL APDU command is also used for closing a
logical channel. Note that the basic logical channel is permanent and can never be
closed as long as the I/O interface remains activated.

On a card that is able to sustain logical channel sessions over both interfaces
simultaneously, there are two sets of twenty logical channels possible. A logical
channel number 0 on the contacted I/O interface is not the same as the logical
channel number 0 on the contactless I/O interface. An applet instance selected on a
logical channel on the contacted I/O interface would normally receive APDUs only
from the contacted I/0O interface. However, it can receive APDUs from the
contactless I/0 interface also, only if the applet instance is concurrently selected on
a logical channel on the contactless I/O interface. Rules of multiselection apply as
described in Section 4.2, “Multiselectable Applets” on page 4-6.

Legacy applets (written for version 2.1 of the Java Card platform) running on
version 2.2.*, need not be aware of logical channel support to work correctly. The
Java Card RE must guarantee that an applet that was not designed to be aware of
multiple sessions is not selected more than once or concurrently with another applet
from the same package.

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

Contact Logical Channels

Contactless Logical Channels

0 1 2 3 4 5 .| 19 0 1 19
|
Y y y
Applet A Applet B Applet C
Package Package Package
P1 P2 P3
A B C D E F
CLEAR_ON_DESELECT Memory Segments
FIGURE 4-1 Logical Channels for Distinct Applets

Support for multiple logical channels (with multiple selected applet instances)
requires a change to the Java Card platform version 2.1.* concept of selected applet.
Because more than one applet instance can be selected at the same time, and one
applet instance can be selected on different logical channels simultaneously, it is
necessary to differentiate the state of the applet instances in more detail.

An applet instance is be considered an active applet instance if it is currently selected
in at least one logical channel, up to a maximum of forty. Each active applet instance
from a distinct package executes with a distinct CLEAR_ON_DESELECT transient
memory segment, see FIGURE 4-1. An applet instance is the currently selected applet
instance only if it is processing the current command. There can only be one
currently selected applet instance at a given time.

Applets with the capability of being selected on multiple logical channels at the
same time, or accepting other applets belonging to the same package being selected
simultaneously, are referred to as multiselectable applets. (Refer to FIGURE 4-2
below.)

No applet is active on the new (or only) logical channel when one of the following
occurs:

m The card is reset and no applet is designated as the default applet instance for the
basic channel on the contacted I/0O interface, or the default applet instance for the
basic channel on the contacted I/O interface rejects selection.

Chapter 4 Logical Channels and Applet Selection 4-3

m The card successfully completes its PICC activation sequence and no applet is
designated as the default applet instance for the basic channel on the contactless
I/0 interface, or the default applet instance for the basic channel on the
contactless I/0 interface rejects selection.

m A MANAGE CHANNEL OPEN command on the basic channel opens a new
channel, and no applet is designated as the default applet instance for that logical
channel.

m A new logical channel is opened when a MANAGE CHANNEL OPEN command
is issued on a logical channel other than the basic channel, on which there is no
active applet.

m A SELECT FILE command fails when attempting to select an applet instance.

4.1

44

Default Applets

Normally, applet instances become selected only via a successful SELECT FILE
command. However, some smart card CAD applications require a default card applet
instance to become implicitly selected after every card reset. In addition, some CAD
applications may also require a default applet selection when a new logical channel
is opened.

In a similar manner, smart card proximity coupling device (PCD) applications
require a default card applet instance to become implicitly selected after the
proximity card (PICC) activation sequence successfully completes. In addition,
default applet selection may also be required on each new logical channel opened
during the contactless session.

The Java Card platform allows the card implementer to designate a default applet
instance for each of the logical channels supported by the card. For any logical
channel, the card implementation may designate an applet instance as the default
applet instance for that logical channel. Alternatively, for any logical channel, the
implementation may choose to designate no default applet instance at all. Logical
channels may share the same applet instance as the default applet instance for more
than one channel.

Upon card reset on the contacted interface and upon the completion of the PICC
activation sequence on the contactless interface, only the basic logical channel (channel
0) is automatically opened. The default card applet instance for the contacted
interface, if any, is therefore the default applet instance for logical channel 0 on the
contacted interface. Similarly, the default card applet instance for the contactless
interface, if any, is therefore the default applet instance for logical channel 0 on the
contactless interface. A card that supports both I/0 interfaces could designate a
different applet instance as default for each interface.

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

4.1.1

4.1.2

Card Reset Behavior

The following describes card reset behavior:

1. After card reset (or power on, which is a form of reset) on the contacted 1/O
interface, the Java Card RE performs its initialization and checks to see if its
internal state indicates that a particular applet instance is the default applet
instance for the basic logical channel. If so, the Java Card RE makes this applet
instance the currently selected applet instance on the basic logical channel, and
the applet’s select method is called. If this method throws an exception or
returns false, the Java Card RE sets its state to indicate that no applet is active
on the basic logical channel.

When a default card applet instance becomes active upon card reset, it shall not
require its process method to be called. The applet instance’s process method
is not called during default applet selection because there is no SELECT FILE
APDU.

2. The Java Card RE ensures that the Answer to Reset (ATR) was sent and the card
is now ready to accept APDU commands.

Proximity Card (PICC) Activation Behavior

The following describes the PICC activation behavior:

1. After the successful completion of the PICC activation sequence on the contactless
interface, the Java Card RE performs its initialization, if the contacted interface is
not already active, and then checks to see if its internal state indicates that a
particular applet instance is the default applet instance for the basic logical
channel on the contactless I/O interface. If the default applet is not a
multiselectable applet (see Section 4.2, “Multiselectable Applets” on page 4-6) and
either an instance of the default applet is already active on the contacted interface,
or another applet instance from the same package is active on the contacted
interface, the Java Card RE sets its state to indicate that no applet is active on the
basic logical channel. Otherwise, the Java Card RE makes this applet instance the
currently selected applet instance on the basic logical channel on the contactless
I/0 interface, and the applet’s select method is called. If this method throws an
exception or returns false, the Java Card RE sets its state to indicate that no
applet is active on the basic logical channel on the contactless I/O interface.

When a default card applet instance becomes active after the successful
completion of the PICC activation sequence on the contactless interface, it shall
not require its process method to be called. The applet instance’s process
method is not called during default applet selection because there is no SELECT
FILE APDU.

Chapter 4 Logical Channels and Applet Selection 4-5

4.1.3

2. The Java Card RE ensures that the Answer to Select (ATS) was sent and the card
is now ready to accept APDU commands.

Default Applet Selection Behavior on Opening a
New Channel

The following default applet selection behavior occurs on opening a new logical
channel.

When a MANAGE CHANNEL command is issued on the basic logical channel and
a new logical channel is opened, the Java Card RE checks if there is a designated
default applet instance for the newly opened logical channel. If so, the Java Card RE
makes this applet instance the currently selected applet instance on the new logical
channel, and the applet’s select method (MultiSelectable.select method if
required) is called. If this method throws an exception or returns false, then the
Java Card RE closes the new logical channel. (The applet instance’s process
method is not called during default applet selection, because there is no SELECT
FILE APDU). A default applet instance shall not require its process method to be
called.

If a default applet instance is successfully selected, then APDU commands can be
sent directly to the applet instance on that logical channel. If no applet is active, then
only SELECT FILE commands for applet selection or MANAGE CHANNEL
commands can be processed on that logical channel.

A MANAGE CHANNEL command issued over an I/O interface shall open a new
logical channel only on the same I/O interface. Similarly a SELECT FILE command
issued over an I/O interface to open a new logical channel shall open a new logical
channel only on the same I/0O interface.

The mechanism for specifying the default applet instance for a logical channel is not
defined in the Java Card APL It is a Java Card RE implementation detail and is left
to the individual implementers.

4.2

Multiselectable Applets

Applets having the capability of being selected on multiple logical channels at the
same time, or accepting other applets belonging to the same package being selected
simultaneously, are referred to as multiselectable applets.

4-6 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

Note — All applets within a package shall be multiselectable or none shall be.

An applet’s context is active when either an instance of the applet is already active, or
when another applet instance from the same package is active. For more information
about contexts see Section 6.1.2, “Contexts and Context Switching” on page 6-2. An
attempt to select an applet instance when the applet’s context is active, is referred to
as a multiselection attempt. If successful, multiselection occurs, and the applet
instance becomes multiselected.

Multiselectable applets shall implement the

javacard. framework.MultiSelectable interface. In case of multiselection, the
applet instance is informed by invoking its methods MultiSelectable.select
and MultiSelectable.deselect during selection and deselection respectively.

When an applet instance not currently active is the first one selected in its package,
its Applet.select method is called. Subsequent multiselections to this applet
instance or selection of other applet instances in the same package shall result in a
call to MultiSelectable.select method. This method is defined in the
MultiSelectable interface. Its only purpose is to inform the applet instance that it
will be multiselected. The applet instance may accept or reject a multiselection
attempt.

If a multiselection attempt is made on an applet which does not implement the
MultiSelectable interface, the selection shall be rejected by the Java Card RE.

When a multiselected applet instance is deselected from one of the logical channels,
the method MultiSelectable.deselect is called. Only when the multiselected
applet instance is the last active applet instance in the applet’s context, is its regular
method Applet.deselect called.

The following list describes the two cases of multiselection:

1. When two distinct applet instances from within the same package are
multiselected, each applet instance shares the same CLEAR_ON_DESELECT
memory transient segment. The applet instances share objects within the context
firewall as well as their transient data. The Java Card RE shall not reset this
CLEAR_ON_DESELECT transient objects until all applet instances within the
package are deselected, see FIGURE 4-2.

Chapter 4 Logical Channels and Applet Selection 4-7

4-8

Logical Channels

0 1 2 3 4 5 || 19

—

Appiet A Appfet B

Package P3

!

\l \l

A B C D E F

CLEAR_ON_DESELECT Memory Segments

FIGURE 4-2 Different Applet Instances in Same Package

2. When the same applet instance is multiselected on two different logical channels
simultaneously, it shares the CLEAR_ON_DESELECT memory segment space
across logical channels. The Java Card RE shall not reset the
CLEAR_ON_DESELECT transient objects until all applet instances within the
package are deselected, see FIGURE 4-3.

Logical Channels

Package P4

\

A B C D E F

CLEAR_ON_DESELECT Memory Segments

FIGURE 4-3 Same Applet Instance Selected on Multiple Logical Channels

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

In both cases of multiselection, the applets must implement the MultiSelectable
interface. If the applets do not support this feature, the selection must be rejected by
the Java Card RE.

4.3

Forwarding APDU Commands To a
Logical Channel

According to Section 5.4 of the ISO 7816-4:2005 Specification specification, the
interindustry values of the CLA byte equal to 0x0X and 0x1X in the APDU command
encode channel numbers in the range 0-3, whereas interindustry values of the CLA
byte equal to 0x4Y, 0x5Y, 0x6Y and 0x7Y in the APDU command encode channel
numbers in the range 4-19.

In addition, cards compliant with Java Card platform specification v2.2.2 must also
support proprietary class values of the CLA byte equal to 0x8X, 0x9X, OxAx and
0xBX for channel numbers in the range 0-3 and proprietary class values of the CLA
byte equal to 0xCY, 0xDY, OxEY and OxFY for channel numbers 4-19 (using 0 origin
notation). The bit encoding of the proprietary class values of the CLA byte mirror
that of the ISO 7816-4:2005 Specification defined interindustry values with the most
significant bit b8 set to 1. TABLE 4-1 and TABLE 4-2 show the supported encodings of
the CLA byte.

The two least significant bits (b2,b1*) of the X nibble encodes the logical channels
numbers 0-3, whereas the Y nibble (b4-b1*) encodes logical channel numbers in the
range 4-19 (using 0 origin notation). When an APDU command is received, the Java
Card RE shall process it and determine whether or not the command has logical
channel information. If logical channel information is encoded, the card dispatches
the APDU command to the appropriate logical channel on that I/O interface. All
other APDU commands are forwarded to the basic logical channel (logical channel
0) on that I/O interface.

TABLE 4-1 [SO 7816-4:2005 Specification Interindustry CLA Semantics

CLA byte encoding Semantic details

%b0000 00zz (Type 4) last or only command in chain, no SM
%b0001 00zz (Type 4) not last command in chain, no SM
%b0000 yyzz (Type 4) last or only command in chain, with SM
%b0001 yyzz (Type 4) not last command in chain, with SM
%b0010 uuuu RFU

Chapter 4 Logical Channels and Applet Selection 4-9

CLA byte encoding

Semantic details

%b0011 uuuu
%b0100 zzzz
%b0101 zzzz
%b01y0 zzzz

%b01yl zzzz

NOTATION

RFU
(Type 16) last or only command in chain, no SM
(Type 16) not last command in chain, no SM

(Type 16) last or only command in chain, with
SM

(Type 16) not last command in chain, with SM

undefined
Secure Messaging (SM) indicator

See ISO 7816-4:2005 Specification Section 6 for
further information.

Logical channel indicator
Type 4 supports logical channels [0..3]
Type 16 supports logical channels [4..19]

TABLE4-2 Java Card Technology Proprietary CLA Semantics

CLA byte encoding

Semantic details

%b1000 00zz
%b1001 002z
%b1000 yyzz
%b1001 yyzz
%b1010 00zz
%b1011 00zz
%b1010 yyzz
%b1011 yyzz
%b1100 zzzz
%b1101 zzzz
%bl1ly0 zzzz

(Type 4) last or only command in chain, no SM
(Type 4) not last command in chain, no SM
(Type 4) last or only command in chain, with SM
(Type 4) not last command in chain, with SM
(Type 4) last or only command in chain, no SM
(Type 4) not last command in chain, no SM
((Type 4) last or only command in chain, with SM
(Type 4) not last command in chain, with SM
(Type 16) last or only command in chain. no SM
(Type 16) not last command in chain, no SM

(Type 16) last or only command in chain, with
SM

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

CLA byte encoding Semantic details

%bllyl zzzz (Type 16) not last command in chain, with SM
NOTATION
undefined
y Secure Messaging indicator

See ISO 7816-4:2005 Specification Section 6 for
further information.

z Logical channel indicator
Type 4 supports logical channels [0..3]
Type 16 supports logical channels [4..19]

Note — CLA byte OxFX cannot encode logical channel 19 because CLA = OxFF is a
reserved value for Protocol Type Selection. In compliance with ISO 7816-4:2005
Specification, logical channel number 19 is not available when using this CLA byte.

The Java Card RE always forwards the command “as is” to the appropriate applet
instance. In particular, the Java Card RE does not clear the logical channel encoding
bits of the CLA byte.

To avoid the complexity of the transport information encoded in the CLA byte of the
APDU command header, the application programmer is advised not to parse the
CLA byte directly. The following methods in the javacard. framework.APDU class
may be used to extract application specific information:

m APDU.isISOInterindustryCLA
m APDU.isSecureMessagingCLA
m APDU.isCommandChainingCLA
m APDU.getCLAChannel

Note — An asterisk indicates binary notation (%b) using bit numbering as in the
ISO7816 specification. Most significant bit is b8. Least significant bit is b1.

4.4 Opening and Closing Logical Channels

According to Section 5.5.2 of the ISO 7816-4 Specification, the following two ways to
open a logical channel in the smart card exist:

Chapter 4 Logical Channels and Applet Selection 4-11

44.1

1. By selecting an applet instance on a new logical channel. This is accomplished by
issuing an Applet SELECT FILE APDU command, and specifying the logical
channel number in the CLA byte of the command. If this logical channel is
currently closed, it shall be opened, and the specified applet instance shall be
selected. See Section 4.5.2, “Applet Selection with SELECT FILE” on page 4-15.

2. By issuing a MANAGE CHANNEL OPEN APDU command. MANAGE
CHANNEL commands are provided to open a logical channel from another
logical channel, or to close a logical channel from another logical channel. See
Section 4.4.1, “MANAGE CHANNEL Command Processing” on page 4-12.

MANAGE CHANNEL Command Processing

The Java Card RE shall intercept all APDU messages coming into the card, perform
card management functions (such as selecting or deselecting applet instances), and
shall forward APDU messages to the appropriate applet instance. As part of its card
management functions, the Java Card RE notifies applet instances about selection
events (a function it performs by calling the applet instances’ select and
deselect methods).

With the addition of logical channels in Java Card platform, the Java Card RE
includes a multichannel dispatching mechanism, as well as checks to ensure applet
integrity during multi-channel operations. The Java Card RE must ensure that
applets written to operate in a single logical channel environment operate
consistently on a multiple logical channel smart card.

Java Card platform defines a class of APDU commands, called MANAGE
CHANNEL commands. The functions the Java Card RE must perform by using
MANAGE CHANNEL command processing are:

MANAGE CHANNEL OPEN: Open a new logical channel from an already-open
logical channel. Two variations of this command are supported:

m The Java Card RE selects the new logical channel specified in the command
m The Java Card RE automatically assigns a new logical channel.

MANAGE CHANNEL CLOSE: Close a specified logical channel from another open
logical channel.

In addition, the SELECT FILE APDU command to select an applet instance is
extended to specify a new or already opened logical channel on which the specified
applet instance is to be selected.

The term origin logical channel refers to the logical channel on which the command is
received based on the logical channel number encoding within the CLA byte, as
described in Section 4.3, “Forwarding APDU Commands To a Logical Channel” on
page 4-9.

4-12 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

4.5

4.5.1

Applet Selection

There are two ways to select an applet instance in the Java Card platform: with a
MANAGE CHANNEL OPEN command (Section 4.5.1, “Applet Selection with
MANAGE CHANNEL OPEN” on page 4-13), or with a SELECT FILE command
(Section 4.5.2, “Applet Selection with SELECT FILE” on page 4-15).

The Java Card RE shall guarantee that an applet that is designed to run on any
logical channel can be selected on any of the available logical channels on the card.
The resources accessed by the applet instance must be the same, irrespective of the
logical channel on which it is selected.

Applet Selection with MANAGE CHANNEL
OPEN

Upon receiving a MANAGE CHANNEL OPEN command on an I/O interface, the
Java Card RE shall run the following procedure:

1. The MANAGE CHANNEL OPEN command uses: CLA=%b000000cc* (where cc
in the bits (b2,b1) denotes the origin logical channel: 0-3), or CLA=%0100dddd*
(where dddd in the bits (b4-b1) denote the origin logical channel: 4-19), INS=0x70
and P1=0. Two variants of this command are supported:

m P2=0 when the Java Card RE shall assign a new logical channel number.
m P2= the logical channel number specified.

s If the MANAGE CHANNEL OPEN command has non-zero secure messaging
bits (b4,b3*) in the CLA byte when the origin logical channel is 0-3 or non-zero
bit (b6*) when the origin logical channel is 4-19, the Java Card RE responds
with status code 0x6882 (SW_SECURE_MESSAGING_NOT_SUPPORTED).

n If the MANAGE CHANNEL command is issued with P1 not equal to 0 or
0x80, or if the unsigned value of P2 is greater than 19, the Java Card RE
responds with status code 0x6A81 (SW_FUNC_NOT_SUPPORTED).

2. If the origin logical channel on that I/O interface is not open, the Java Card RE
responds with status code 0x6881 (SW_LOGICAL_CHANNEL_NOT_SUPPORTED).

3. If the Java Card RE supports only the basic logical channel on that I/O interface,
the Java Card RE responds with status code 0x6881
(SW_LOGICAL_CHANNEL_NOT_SUPPORTED).

4. If the P2=0 variant is used:

m If the expected length value (Le) is not equal to 1, the Java Card RE responds with
status code 0x6C01 (SW_CORRECT_LENGTH_00+0x01).

Chapter 4 Logical Channels and Applet Selection 4-13

m If resources for the new logical channel are not available, the Java Card RE
responds with status code 0x6A81 (SW_FUNC_NOT_SUPPORTED).

5. If the P2 != 0 variant is used:

If resources for the specified logical channel are not available or the logical
channel is already open, the Java Card RE responds with status code 0x6A86
(SW_INCORRECT_P1P2).

6. The new logical channel on the I/0O interface that received the MANAGE
CHANNEL OPEN command is now open. This logical channel will be the
assigned channel for the applet instance that will be selected on it.

7. Determine the applet instance to be selected on the new logical channel.
m If the origin logical channel is the basic logical channel (logical channel 0), then:

» If a default applet instance for the new logical channel on the I/O interface is
defined, pick the default applet instance for that logical channel as the
candidate for selection on the new logical channel.

n Otherwise, set the Java Card RE state so that no applet is active on the new
logical channel. The Java Card RE responds with status code 0x9000 and if the
P2=0 variant is used, one data byte containing the newly assigned logical
channel number.

m If the origin logical channel is not the basic logical channel:

» If an applet instance is active on the origin logical channel, pick the applet
instance as the candidate for selection on the new logical channel.

» Otherwise, set the Java Card RE state so that no applet is active on the new
logical channel. The Java Card RE responds with status code 0x9000 and if the
P2=0 variant is used, one data byte containing the newly assigned logical
channel number.

8. If the candidate applet instance is not a multiselectable applet (as defined in
Section 4.2, “Multiselectable Applets” on page 4-6) and the candidate applet’s
context is active, the Java Card RE shall close the new logical channel. The Java
Card RE responds with status code 0x6985 (SW_CONDITIONS_NOT_SATISFIED).

9. Assign the CLEAR_ON_DESELECT transient memory segment for the new logical
channel:

m If the applet’s context is active, assign the CLEAR_ON_DESELECT transient
memory segment associated with that context to this logical channel.

m Otherwise, assign a new (zero-filled) CLEAR_ON_DESELECT transient memory
segment to this new logical channel.
10. Check whether the candidate applet instance accepts selection:

m If the candidate applet’s context is active, the Java Card RE shall set the candidate
applet instance as the currently selected applet instance and call the
MultiSelectable.select method, where the parameter

4-14 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

4.5.2

appInstAlreadyActive is set to true if the same applet instance is already
active on another logical channel. A context switch into the candidate applet
instance’s context occurs at this point. For more details on contexts, see
Section 6.1.2, “Contexts and Context Switching” on page 6-2.

m Otherwise, if the candidate applet’s context is not active, the Java Card RE shall
set the candidate applet instance as the currently selected applet instance and call
the Applet.select method. A context switch into the candidate applet
instance’s context occurs at this point.

m If the applet instance’s select method throws an exception or returns false,
then the Java Card RE closes the new logical channel. The Java Card RE responds
with status code 0x6999 (SW_APPLET_SELECT_FAILED).

11. The Java Card RE responds with status code 0x9000 (and if the P2=0 variant is
used, 1 data byte containing the newly assigned logical channel number.)

Note — Unlike the SELECT FILE commands to select an applet instance, the
MANAGE CHANNEL command is never forwarded to the applet instance.

Applet Selection with SELECT FILE

Upon receiving a SELECT FILE command on an I/O interface, the Java Card RE
shall run the following procedure:

1. The Applet SELECT FILE command uses: CLA=%b000000cc* (where cc in the
bits (b2,b1*) specifies the logical channel to be selected: 0-3), or CLA=
$0100dddd* (where dddd in the bits (b4-b1l) denote the origin logical channel: 4-
19) and INS=0x24.

If the SELECT FILE command has non-zero secure messaging bits (b4,b3*) in the
CLA byte when the origin logical channel is 0-3 or non-zero bit (b6*) when the
origin logical channel is 4-19, it is deemed not to be an Applet SELECT FILE
command. The Java Card RE simply forwards the command to the active applet
on the specified logical channel.

m The Applet SELECT FILE command uses “Selection by DF name” with P1=0x04.
m The Java Card RE shall support both of the following:

m Selection by “exact DF name(AID)” with P2=%b0000xx00 (b4,b3* are don't
care) and

n The RFU variant described in ISO 7816-4 Specification with P2=%b0001xx00
(b4,b3* are don’t care).

m All other partial DF name SELECT FILE options (b2,b1* variants) are Java Card
RE implementation dependent.

Chapter 4 Logical Channels and Applet Selection 4-15

4-16

All file control information options codes (b4,b3*) of the P2 parameter shall be
supported by the Java Card RE and interpreted and processed by the applet
instance itself.

. If resources for the specified logical channel (in bits cc of the CLA) are not

available, the Java Card RE responds with status code 0x6881
(SW_LOGICAL_CHANNEL_NOT_SUPPORTED).

. If the specified logical channel is not open on the I1/O interface that received the

SELECT FILE command, it is now opened and the Java Card RE state is set so that
no applet is active on this new logical channel. The specified logical channel will
be the assigned channel for the applet instance that will be active on it.

. The Java Card RE searches the internal applet table which lists all successfully

installed applet instances on the card for an applet instance with a matching AID.
If a matching applet instance is found, it is picked as the candidate applet
instance. Otherwise, if no AID match is found:

If there is no active applet instance on the specified logical channel, the Java Card
RE responds with status code 0x6999 (SW_APPLET_SELECT_FAILED).

Otherwise, the active applet instance on this logical channel is set as the currently
selected applet instance and the SELECT FILE command is forwarded to that
applet instance’s process method. A context switch into the applet instance’s
context occurs at this point, see Section 6.1.1, “Firewall Protection” on page 6-1.
Applets may use the SELECT FILE command for their own internal processing.
Upon return from the applet’s process method, the Java Card RE sends the
applet instance’s response as the response to the SELECT FILE command.

. If the candidate applet instance is not a multiselectable applet, and the candidate

applet's context is active, the logical channel remains open and the Java Card RE
records an error response status code of 0x6985
(SW_CONDITIONS_NOT_SATISFIED). Prior to sending the response code, if there
is an active applet instance on the logical channel, then the Java Card RE may
optionally deselect the applet instance, as described in Section 4.6, “Applet
Deselection” on page 4-17, and set the state so that no applet is active on the
specified logical channel.

. Assign the CLEAR_ON_DESELECT transient memory segment for the new logical

channel in the following cases:

If any applet instance from the same package as that of the candidate applet
instance is active on another logical channel, assign the same
CLEAR_ON_DESELECT transient memory segment to this logical channel.

Otherwise, assign a different (zero-filled) CLEAR_ON_DESELECT transient
memory segment to this new logical channel.

. Check whether the candidate applet instance accepts selection:

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

m If the candidate applet’s context is active, the Java Card RE shall set the candidate
applet instance as the currently selected applet instance and call the
MultiSelectable.select (appInstAlreadyActive) method, where the
parameter appInstAlreadyActive is set to true if the same applet instance is
already active on another logical channel. A context switch into the candidate
applet instance’s context occurs at this point, see Section 6.1.2, “Contexts and
Context Switching” on page 6-2.

m Otherwise, if the candidate applet’s context is not active, the Java Card RE shall
set the candidate applet instance as the currently selected applet instance and call
the Applet.select method. A context switch into the candidate applet
instance’s context occurs at this point.

m If the applet instance’s select method throws an exception or returns false,
then the Java Card RE state is set so that no applet is active on the specified
logical channel. The logical channel remains open, and the Java Card RE responds
with status code 0x6999 (SW_APPLET_SELECT_FAILED).

8. The Java Card RE shall set the candidate applet instance as the currently selected
applet instance and call the Applet.process method with the SELECT FILE
APDU as the input parameter. A context switch occurs into the applet instance’s
context at this point. Upon return from the applet instance’s process method,
the Java Card RE sends the applet instance’s response as the response to the
SELECT FILE command.

Note — If the SELECT FILE command does not conform to the exact format of an
Applet SELECT FILE command described in item 1 above or if there is no matching
AID, the SELECT FILE command is forwarded to the active applet instance (if any)
on that logical channel for processing as a normal applet APDU command.

If there is a matching AID and the SELECT FILE command fails, the Java Card RE
always sets the state in which no applet is active on that logical channel.

If the matching AID is the same as the active applet instance on the specified logical
channel, the Java Card RE still goes through the process of deselecting the applet
instance and then selecting it. Reselection could fail, leaving the card in a state in
which no applet is active on that logical channel.

4.6

Applet Deselection

An applet instance is deselected either upon receipt of a MANAGE CHANNEL
CLOSE command, or as a result of a SELECT FILE command that selects a different
(or the same) applet instance on the specified logical channel.

Chapter 4 Logical Channels and Applet Selection 4-17

4.6.1

In either case, when an applet instance is deselected the following procedure shall be
followed by the Java Card RE:

m If the applet instance to be deselected is active on more than one logical channel,
or another applet instance from the same package is also active, the Java Card RE
sets the currently selected applet instance to be the applet instance being
deselected, and callsits MultiSelectable.deselect (appInstStillActive)
method, where the appInstStillActive parameter is set to true if the same
applet instance is still active on another logical channel. A context switch occurs
into the applet instance’s context at this point, see Section 6.1.2, “Contexts and
Context Switching” on page 6-2.

m Otherwise, the Java Card RE sets the currently selected applet instance to be the
applet instance being deselected, and calls its Applet.deselect method. Upon
return or uncaught exception, the Java Card RE clears the fields of all
CLEAR_ON_DESELECT transient objects in the context of deselected applet
instance.

Note — Note that the deselection is always successful even if the applet instance
throws an exception from within the deselect method.

MANAGE CHANNEL CLOSE Command

Upon receiving a MANAGE CHANNEL CLOSE command on an I/O interface, the
Java Card RE shall run the following procedure:

1. The MANAGE CHANNEL CLOSE command uses: CLA=%b000000cc* (where
cc in the bits (b2,b1) denotes the origin logical channel: 0-3) or CLA=
$0100dddd* (where dddd in the bits (b4-b1) denote the origin logical channel: 4-
19), INS=0x70, P1=0x80 and P2 specifies the logical channel to be closed.

m If the MANAGE CHANNEL CLOSE command has non-zero secure messaging
bits (b4,b3) in the CLA byte when the origin logical channel is 0-3 or non-zero bit
(b6*) when the origin logical channel is 4-19, the Java Card RE responds with
status code 0x6882 (SW_SECURE_MESSAGING_NOT_SUPPORTED).

m If the MANAGE CHANNEL command is issued with P1 not equal 0 or 0x80, the
Java Card RE responds with status code 0x6A81 (SW_FUNC_NOT_SUPPORTED).

2. If the origin logical channel on the I/O interface that received the MANAGE
CHANNEL CLOSE command is not open, the Java Card RE responds with status
code 0x6881 (SW_LOGICAL_CHANNEL_NOT_SUPPORTED).

3. If the Java Card RE supports only the basic logical channel on the I/O interface
that received the MANAGE CHANNEL CLOSE command, the Java Card RE
responds with status code 0x6881 (SW_LOGICAL_CHANNEL_NOT_SUPPORTED).

4-18 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

4. If the specified logical channel to close is the basic logical channel (logical channel
0) or the specified logical channel number is greater than 19, the Java Card RE
responds with status code 0x6A81 (SW_FUNC_NOT_SUPPORTED).

5. If the specified logical channel to close is currently open on the I/O interface that
received the MANAGE CHANNEL CLOSE command, deselect the active applet
instance (if any) on the specified logical channel as described above in Section 4.6,
“Applet Deselection” on page 4-17. The specified logical channel is now closed.
The Java Card RE responds with status code 0x9000.

6. Otherwise, if the specified logical channel is closed or not available on that I/O
interface, the Java Card RE responds with warning status code 0x6200
(SW_WARNING_STATE_UNCHANGED).

4.7

Other Command Processing

When an APDU other than a SELECT FILE or MANAGE CHANNEL command is
received, the logical channel to be used for dispatching the command is based on the
CLA byte as described in Section 4.3, “Forwarding APDU Commands To a Logical
Channel” on page 4-9.

When the Java Card RE receives an APDU other than a SELECT FILE or MANAGE
CHANNEL command with either of the following:

m An unsupported logical channel number in the CLA byte
m An unopened logical channel number in the CLA byte

It shall respond to the APDU with status code 0x6881
(SW_LOGICAL_CHANNEL_NOT_SUPPORTED).

If there is no active applet instance on the logical channel to be used for dispatching
the command, the Java Card RE shall respond to the APDU with status code 0x6999
(SW_APPLET_SELECT_FAILED).

When an APDU other than a Applet SELECT FILE or a MANAGE CHANNEL
command is received, and there is an active applet instance on the logical channel to
be used for dispatching the command, the Java Card RE sets the active applet
instance on the origin channel as the currently selected applet instance and invokes
the process method passing the APDU as a parameter. This causes a context switch
from the Java Card RE context into the currently selected applet instance’s context
(For more information on contexts see Section 6.1.2, “Contexts and Context
Switching” on page 6-2.) When the process method exits, the VM switches back to
the Java Card RE context. The Java Card RE sends the response APDU and waits for
the next command APDU.

Chapter 4 Logical Channels and Applet Selection 4-19

Note that the Java Card RE dispatches the APDU command “as is” to the applet
instance for processing via the process method. Therefore, the CLA byte in the
command header contains in its least significant bits the origin channel number. An
applet designed to run on any logical channel needs to mask out these two bits
before checking for specific values.

4-20 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

CHAPTER 5

Transient Objects

Applets sometimes require objects that contain temporary (transient) data that need
not be persistent across CAD sessions. The Java Card platform does not support the
Java programming language keyword transient. However, Java Card technology
provides methods to create transient arrays with primitive components or references
to Object.

Note — In this section, the term field is used to refer to the component of an array
object also.

The term “transient object” is a misnomer. It can be incorrectly interpreted to mean
that the object itself is transient. However, only the contents of the fields of the object
(except for the length field) have a transient nature. As with any other object in the
Java programming language, transient objects within the Java Card platform exist as
long as they are referenced from:

m The stack

m Local variables

m A class static field

m A field in another existing object

A transient object within the Java Card platform has the following required
behavior:

m The fields of a transient object shall be cleared to the field’s default value (zero,
false, or null) at the occurrence of certain events (see Section 5.1, “Events That
Clear Transient Objects” on page 5-2).

m For security reasons, the fields of a transient object shall never be stored in a
“persistent memory technology.” Using current smart card technology as an
example, the contents of transient objects can be stored in RAM, but never in
EEPROM. The purpose of this requirement is to allow transient objects to be used
to store session keys.

m Writes to the fields of a transient object shall not have a performance penalty.
Using current smart card technology as an example, the contents of transient
objects can be stored in RAM, while the contents of persistent objects can be
stored in EEPROM. Typically, RAM technology has a much faster write cycle time
than EEPROM.

m Writes to the fields of a transient object shall not be affected by “transactions.”
That is, an abortTransaction never causes a field in a transient object to be
restored to a previous value.

This behavior makes transient objects ideal for small amounts of temporary applet
data that is frequently modified, but that need not be preserved across CAD or select
sessions.

5.1

5-2

Events That Clear Transient Objects

Persistent objects are used for maintaining states that shall be preserved across card
resets. When a transient object is created, one of two events is specified that causes
its fields to be cleared. CLEAR_ON_RESET transient objects are used for maintaining
states that shall be preserved across applet selections, but not across card resets.
CLEAR_ON_DESELECT transient objects are used for maintaining states that must be
preserved while an applet is selected, but not across applet selections or card resets.

Details of the two clear events are as follows:

m CLEAR_ON_RESET - The object’s fields (except for the length field) are cleared
when the card is reset. When a card is powered on, this also causes a card reset.

Note — It is not necessary to clear the fields of transient objects before power is
removed from a card. However, it is necessary to guarantee that the previous
contents of such fields cannot be recovered once power is lost.

m CLEAR_ON_DESELECT - The object’s fields (except for the length field) are cleared
whenever the applet is deselected and no other applets from the same package
are active on the card. Because a card reset implicitly deselects the currently
selected applet, the fields of CLEAR_ON_DESELECT objects are also cleared by the
same events specified for CLEAR_ON_RESET.

The currently selected applet is explicitly deselected (its deselect method is called)
only when a SELECT FILE command or MANAGE CHANNEL CLOSE command is
processed. The currently selected applet is deselected and then the fields of all
CLEAR_ON_DESELECT transient objects owned by the applet are cleared if no other
applets from the same package are active on the card, regardless of whether the
SELECT FILE command:

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

m Fails to select an applet
m Selects a different applet
m Reselects the same applet

Chapter 5 Transient Objects 5-3

5-4 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

CHAPTER 6

Applet Isolation and Object Sharing

Any implementation of the Java Card RE shall support isolation of contexts and
applets. Isolation means that one applet cannot access the fields or objects of an
applet in another context unless the other applet explicitly provides an interface for
access. The Java Card RE mechanisms for applet isolation and object sharing are
detailed in the following sections.

6.1

6.1.1

Applet Firewall

The applet firewall within Java Card technology is runtime-enforced protection and is
separate from the Java technology protections. The Java programming language
protections still apply to Java Card applets. The Java programming language ensures
that strong typing and protection attributes are enforced.

Applet firewalls are always enforced in the Java Card VM. They allow the VM to
automatically perform additional security checks at runtime.

Firewall Protection

The Java Card technology-based firewall (Java Card firewall) provides protection
against the most frequently anticipated security concern: developer mistakes and
design oversights that might allow sensitive data to be “leaked” to another applet.
An applet may be able to obtain an object reference from a publicly accessible
location. However, if the object is owned by an applet protected by its own firewall,
the requesting applet must satisfy certain access rules before it can use the reference
to access the object.

6-1

6.1.2

The firewall also provides protection against incorrect code. If incorrect code is
loaded onto a card, the firewall still protects objects from being accessed by this
code.

The Runtime Environment Specification, Java Card Platform, Version 2.2.2 specifies the
basic minimum protection requirements of contexts and firewalls because the
features described in this document are not transparent to the applet developer.
Developers shall be aware of the behavior of objects, APIs, and exceptions related to
the firewall.

Java Card RE implementers are free to implement additional security mechanisms
beyond those of the applet firewall, as long as these mechanisms are transparent to
applets and do not change the externally visible operation of the VM.

Contexts and Context Switching

Firewalls essentially partition the Java Card platform’s object system into separate
protected object spaces called contexts. These are illustrated in FIGURE 6-1. The
firewall is the boundary between one context and another. The Java Card RE shall
allocate and manage a context for each Java API package containing applets!. All
applet instances within a single Java API package share the same context. There is
no firewall between individual applet instances within the same package. That is, an
applet instance can freely access objects belonging to another applet instance that
resides in the same package.

1. Note thata library package is not assigned a separate context. Objects from a library package belong to the
context of the creating applet instance.

6-2 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

6.1.2.1

system space

Java Card RE Context)

applet space

context 1 context 2
applet A applet C
applet B applet D
o y
Package A Package B

applet firewall

FIGURE 6-1 Contexts Within the Java Card Platform’s Object System

In addition, the Java Card RE maintains its own Java Card RE context. This context is
much like the context of an applet, but it has special system privileges so that it can
perform operations that are denied to contexts of applets. For example, access from
the Java Card RE context to any applet instance’s context is allowed, but the
converse, access from an applet instance’s context to the Java Card RE context, is
prohibited by the firewall.

Active Contexts in the VM

At any point in time, there is only one active context within the VM. This is called the
currently active context. This can be either the Java Card RE context or an applet’s
context. All bytecodes that access objects are checked at runtime against the currently
active context in order to determine if the access is allowed. A
java.lang.SecurityException is thrown when an access is disallowed.

Chapter 6 Applet Isolation and Object Sharing 6-3

6.1.2.2

6.1.3

Context Switching in the VM

If access is allowed, the VM determines if a context switch is required. A context
switch occurs when certain well-defined conditions, as described in Section 6.2.8,
“Class and Object Access Behavior” on page 6-15, are met during the execution of
invoke-type bytecodes. For example, a context switch may be caused by an attempt
to access a shareable object that belongs to an applet instance that resides in a
different package. The result of a context switch is a new currently active context.

During a context switch, the previous context and object owner information is
pushed on an internal VM stack, a new context becomes the currently active context,
and the invoked method executes in this new context. Upon exit from that method
the VM performs a restoring context switch. The original context (of the caller of the
method) is popped from the stack and is restored as the currently active context.
Context switches can be nested. The maximum depth depends on the amount of VM
stack space available.

Most method invocations in Java Card technology do not cause a context switch. For
example, a context switch is unnecessary when an attempt is made to access an
object that belongs to an applet instance that resides in the same package. Context
switches only occur during invocation of and return from certain methods, as well as
during exception exits from those methods (see Section 6.2.8, “Class and Object
Access Behavior” on page 6-15).

Further details of contexts and context switching are provided in later sections of
this chapter.

Object Ownership

Any given object in the Java Card platform’s object space has a context and an
owner associated with it. When a new object is created, it is associated with the
currently active context, but the object is owned by the applet instance within the
currently active context when the object is instantiated. An object can be owned by
an applet instance, or by the Java Card RE.

Following are the combined rules of context and object ownership within the
firewall:

m Every applet instance belongs to a context. All applet instances from the same
package belong to the same context.

m Every object is owned by an applet instance (or the Java Card RE). An applet
instance is identified by its AID. When executing in an instance method of an
object (or a static class method called from within), the object’s owner must be in
the currently active context.

6-4 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

For example, assume that applets A and B are in the same package, and applet C is
in another package. A and B therefore belong to the same context: 1. C belongs to a
different context: 2. For an illustration of this situation, see FIGURE 6-2.

If context 1 is the currently active context, and a method m1 in an object owned by
applet A is invoked, no context switch occurs. If method m1 invokes a method m2 in
an object owned by applet B, again no context switch occurs (in spite of the object
“owner” change), and no firewall restrictions apply.

However, if the method m2 now calls a method m0 in an object owned by applet C,
firewall restrictions apply and, if access is allowed, a context switch shall occur.
Upon return to method m2 from the method m0, the context of applet B is restored.

applet space

context 1 context 2

no context
switch

L applet B
m2 -

applet D

Package A Package B

applet firewall

FIGURE6-2 Context Switching and Object Access

Keep the following points in mind:

m When the m1 method in the object owned by applet A calls the method m2 in the
object owned by applet B, the context does not change but the owner of the object
does change. If the JCSystem.getAID method is called from method m2 within
context 1, the AID of applet B is returned.

m When method m2 calls method m0 in an object owned by applet C, applet B is the
owner of the object when the context switches from 1 to 2. Therefore, if the
JCSystem.getAID method is called from method m0 within context 2, the AID
of applet C shall be returned. If the JCSystem.getPreviousContextAID
method is called, the AID of applet B shall be returned.

Chapter 6 Applet Isolation and Object Sharing 6-5

6.1.4

6.1.5

m When the JCSystem.getAID method is called from method m2 after the return
from method m0 in context 2, the AID of applet B is returned. However, if the
JCSystem.getPreviousContextAID method is called, the AID of the applet
which called into context 1 (or null if Java Card RE) is returned and not the AID
of applet C.

Object Access

In general, an object can only be accessed by its owning context, that is, when the
owning context is the currently active context. The firewall prevents an object from
being accessed by another applet in a different context.

In implementation terms, each time an object is accessed, the object’s owner context
is compared to the currently active context. If these do not match, the access is not
performed and a SecurityException is thrown.

An object is accessed when one of the following bytecodes is executed using the
object’s reference:

getfield, putfield, invokevirtual, invokeinterface,

athrow, <T>aload, <T>astore, arraylength, checkcast, instanceof
<T> refers to the various types of array bytecodes, such as baload and sastore.

This list includes any special or optimized forms of these bytecodes implemented in
the Java Card VM, such as getfield_b and getfield_s_this.

Transient Objects and Contexts

Transient objects of CLEAR_ON_RESET type behave like persistent objects in that
they can be accessed only when the currently active context is the object’s owning
context (the currently active context at the time when the object was created).

Transient objects of CLEAR_ON_DESELECT type can only be created or accessed
when the currently active context is the context of the currently selected applet. If
any of the makeTransient factory methods of JCSystem class are called to create a
CLEAR_ON_DESELECT type transient object when the currently active context is not
the context of the currently selected applet (even if the attempting context is that of
an active applet instance on another logical channel), the method shall throw a
java.lang.SystemException with reason code of ILLEGAL_TRANSIENT. If an
attempt is made to access a transient object of CLEAR_ON_DESELECT type when the
currently active context is not the context of the currently selected applet (even if the
attempting context is that of an active applet instance on another logical channel),
the Java Card RE shall throw a java.lang.SecurityException.

6-6 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

6.1.6

6.1.6.1

Applets that are part of the same package share the same context. Every applet
instance from a package shares all its object instances with all other instances from
the same package. This includes transient objects of both CLEAR_ON_RESET type
and CLEAR_ON_DESELECT type owned by these applet instances.

The transient objects of CLEAR_ON_DESELECT type owned by any applet instance in
the same package shall be accessible when any of the applet instances is the
currently selected applet.

Static Fields and Methods

Instances of classes (objects) are owned by contexts. Classes themselves are not.
There is no runtime context check that can be performed when a class static field is
accessed. Neither is there a context switch when a static method is invoked.
Similarly, invokespecial causes no context switch.

Public static fields and public static methods are accessible from any context: Static
methods execute in the same context as their caller.

Objects referenced in static fields are just regular objects. They are owned by
whomever created them and standard firewall access rules apply. If it is necessary to
share them across multiple contexts, these objects need to be Shareable Interface
Objects (SIOs), see Section 6.2.4, “Shareable Interfaces” on page 6-10.

Of course, the conventional Java technology protections are still enforced for static
fields and methods. In addition, when applets are installed, the Installer verifies that
each attempt to link to an external static field or method is permitted. Installation
and specifics about linkage are beyond the scope of this specification.

Optional Static Access Checks

The Java Card RE may perform optional runtime checks that are redundant with the
constraints enforced by a verifier. A Java Card VM may detect when code violates
fundamental language restrictions, such as invoking a private method in another
class, and report or otherwise address the violation.

Chapter 6 Applet Isolation and Object Sharing 6-7

6.2 Object Access Across Contexts

The applet firewall confines an applets actions to its designated context. To enable
applets to interact with each other and with the Java Card RE, some well-defined yet
secure mechanisms are provided so one context can access an object belonging to
another context.

These mechanisms are provided in the Java Card API and are discussed in the
following sections:

Section 6.2.1, “Java Card RE Entry Point Objects” on page 6-8
Section 6.2.2, “Global Arrays” on page 6-9

Section 6.2.3, “Java Card RE Privileges” on page 6-10

Section 6.2.4, “Shareable Interfaces” on page 6-10

6.2.1 Java Card RE Entry Point Objects

Secure computer systems must have a way for non-privileged user processes (that
are restricted to a subset of resources) to request system services performed by
privileged “system” routines.

In the Java Card API, this is accomplished using Java Card RE Entry Point Objects.
These are objects owned by the Java Card RE context, but they are flagged as
containing entry point methods.

The firewall protects these objects from access by applets. The entry point
designation allows the methods of these objects to be invoked from any context.
When that occurs, a context switch to the Java Card RE context is performed. These
methods are the gateways through which applets request privileged Java Card RE
system services. The requested service is performed by the entry point method after
verifying that the method parameters are within bounds and all objects passed in as
parameters are accessible from the caller’s context.

Following are the two categories of Java Card RE Entry Point Objects:
m Temporary Java Card RE Entry Point Objects

Like all Java Card RE Entry Point Objects, methods of temporary Java Card RE
Entry Point Objects can be invoked from any context. However, references to
these objects cannot be stored in class variables, instance variables or array
components. The Java Card RE detects and restricts attempts to store references to
these objects as part of the firewall functionality to prevent unauthorized reuse.

The APDU object and all Java Card RE owned exception objects are examples of
temporary Java Card RE Entry Point Objects.

6-8 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

6.2.2

m Permanent Java Card RE Entry Point Objects

Like all Java Card RE Entry Point Objects, methods of permanent Java Card RE
Entry Point Objects can be invoked from any context. Additionally, references to
these objects can be stored and freely re-used.

Java Card RE owned AID instances are examples of permanent Java Card RE
Entry Point Objects.

The Java Card RE is responsible for the following tasks:

Determining what privileged services are provided to applets

Defining classes containing the entry point methods for those services
Creating one or more object instances of those classes

Designating those instances as Java Card RE Entry Point Objects
Designating Java Card RE Entry Point Objects as temporary or permanent
Making references to those objects available to applets as needed

Note — Only the methods of these objects are accessible through the firewall. The
fields of these objects are still protected by the firewall and can only be accessed by
the Java Card RE context.

Only the Java Card RE itself can designate Entry Point Objects and whether they are
temporary or permanent. Java Card RE implementers are responsible for
implementing the mechanism by which Java Card RE Entry Point Objects are
designated and how they become temporary or permanent.

Global Arrays

The global nature of some objects requires that they be accessible from any context.
The firewall would ordinarily prevent these objects from being used in a flexible
manner. The Java Card VM allows an object to be designated as global.

All global arrays are temporary global array objects. These objects are owned by the
Java Card RE context, but can be accessed from any context. However, references to
these objects cannot be stored in class variables, instance variables or array
components. The Java Card RE detects and restricts attempts to store references to
these objects as part of the firewall functionality to prevent unauthorized reuse.

For added security, only arrays can be designated as global and only the Java Card
RE itself can designate global arrays. Because applets cannot create them, no API
methods are defined. Java Card RE implementers are responsible for implementing
the mechanism by which global arrays are designated.

At the time of publication of this specification, the only global arrays required in the
Java Card API are the APDU buffer and the byte array input parameter (bArray) to
the applet’s install method.

Chapter 6 Applet Isolation and Object Sharing 6-9

6.2.3

6.2.4

Note — Because of the global status of the APDU buffer, the Application Programming
Interface, Java Card Platform, Version 2.2.2 specifies that this buffer is cleared to zeroes
whenever an applet is selected, before the Java Card RE accepts a new APDU
command. This is to prevent an applet’s potentially sensitive data from being
“leaked” to another applet via the global APDU buffer. The APDU buffer can be
accessed from a shared interface object context and is suitable for passing data
across different contexts. The applet is responsible for protecting secret data that
may be accessed from the APDU buffer.

Java Card RE Privileges

Because it is the “system” context, the Java Card RE context has a special privilege.
It can invoke a method of any object on the card. For example, assume that object X
is owned by applet A. Normally, only the context of A can access the fields and
methods of X. But the Java Card RE context is allowed to invoke any of the methods
of X. During such an invocation, a context switch occurs from the Java Card RE
context to the context of the applet that owns X.

Again, because it is the “system” context, the Java Card RE context can access fields
and components of any object on the card including CLEAR_ON_DESELECT transient
objects owned by the currently selected applet.

Note — The Java Card RE can access both methods and fields of X. Method access is
the mechanism by which the Java Card RE enters the context of an applet. Although
the Java Card RE could invoke any method through the firewall, it shall only invoke
the select, process, deselect, and getShareableInterfaceObject (see
Section 6.2.7.1, “Applet .getShareableInterfaceObject (AID, byte)
Method” on page 6-14) methods defined in the Applet class, and methods on the
objects passed to the API as parameters.

The Java Card RE context is the currently active context when the VM begins
running after a card reset. The Java Card RE context is the “root” context and is
always either the currently active context or the bottom context saved on the stack.

Shareable Interfaces

Shareable interfaces are a feature in the Java Card API to enable applet interaction. A
shareable interface defines a set of shared interface methods. These interface
methods can be invoked from one context even if the object implementing them is
owned by an applet in another context.

6-10 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

6.2.4.1

6.2.4.2

In this specification, an object instance of a class implementing a shareable interface
is called a Shareable Interface Object (SIO).

To the owning context, the SIO is a normal object whose fields and methods can be
accessed. To any other context, the SIO is an instance of the shareable interface, and
only the methods defined in the shareable interface are accessible. All other fields
and methods of the SIO are protected by the firewall.

Shareable interfaces provide a secure mechanism for inter-applet communication, as
described in the following sections.

Server Applet A Builds a Shareable Interface Object

1.

To make an object available for sharing with another applet in a different context,
applet A first defines a shareable interface, SI. A shareable interface extends the
interface javacard. framework.Shareable. The methods defined in the
shareable interface, SI, represent the services that applet A makes accessible to
other applets.

Applet A then defines a class C that implements the shareable interface SI. C
implements the methods defined in SI. C may also define other methods and
fields, but these are protected by the applet firewall. Only the methods defined in
SI are accessible to other applets.

Applet A creates an object instance O of class C. O belongs to applet A, and the
firewall allows A to access any of the fields and methods of O.

Client Applet B Obtains the Shareable Interface Object

1.
2.

To access applet A’s object O, applet B creates an object reference SIO of type SI

Applet B invokes a special method
(JCSystem.getAppletShareableInterfaceObject, described in

Section 6.2.7.2, “JCSystem.getAppletShareableInterfaceObject Method”
on page 6-15) to request a shared interface object reference from applet A.

Applet A receives the request and the AID of the requester (B) via
Applet.getShareableInterfaceObject, and determines whether it will
share object O with applet B. A’s implementation of the
getShareableInterfaceObject method executes in A’s context.

If applet A agrees to share with applet B, A responds to the request with a
reference to O. As this reference is returned as type Shareable, none of the fields
or methods of O are visible.

Chapter 6 Applet Isolation and Object Sharing 6-11

Applet B receives the object reference from applet A, casts it to the interface type
SI, and stores it in object reference variable SIO. Even though SIO actually refers
to A’s object O, SIO is an interface of type SI. Only the shareable interface
methods defined in SI are visible to B. The firewall prevents the other fields and
methods of O from being accessed by B.

In this sequence, applet B initiates communication with applet A using the special
system method in the JCSystem class to request a Shareable Interface Object from
applet A. Once this communication is established, applet B can obtain other
Shareable Interface Objects from applet A using normal parameter passing and
return mechanisms. It can also continue to use the special JCSystem method
described above to obtain other Shareable Interface Objects.

6.2.4.3 Client Applet B Requests Services from Applet A

1.

Applet B can request service from applet A by invoking one of the shareable
interface methods of SIO. During the invocation the Java Card VM performs a
context switch. The original currently active context (B) is saved on a stack and
the context of the owner (A) of the actual object (O) becomes the new currently
active context. A’s implementation of the shareable interface method (SI method)
executes in A’s context.

. The SI method can determine the AID of its client (B) via the

JCSystem.getPreviousContextAID method. This is described in Section 6.2.5,
“Determining the Previous Context” on page 6-13. The method determines
whether or not it will perform the service for applet B.

. Because of the context switch, the firewall allows the SI method to access all the

fields and methods of object O and any other object in the context of A. At the
same time, the firewall prevents the method from accessing non-shared objects in
the context of B.

. The SI method can access the parameters passed by B and can provide a return

value to B.

. During the return, the Java Card VM performs a restoring context switch. The

original currently active context (B) is popped from the stack, and again becomes
the currently active context.

. Because of the context switch, the firewall again allows B to access any of its

objects and prevents B from accessing non-shared objects in the context of A.

6-12 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

6.2.5

6.2.5.1

6.2.6

6.2.6.1

Determining the Previous Context

When an applet calls JCSystem.getPreviousContextAID, the Java Card RE shall
return the instance AID of the applet instance active at the time of the last context
switch.

Java Card RE Context

The Java Card RE context does not have an AID. If an applet calls the
getPreviousContextAID method when the context of the applet was entered
directly from the Java Card RE context, this method returns null.

If the applet calls getPreviousContextAID from a method that may be accessed
either from within the applet itself or when accessed via a shareable interface from
an external applet, it shall check for null return before performing caller AID
authentication.

Shareable Interface Details

A shareable interface is simply one that extends (either directly or indirectly) the
tagging interface javacard. framework.Shareable. This Shareable interface is
similar in concept to the Remote interface used by the RMI facility, in which calls to
the interface methods take place across a local/remote boundary.

Java Card API Shareable Interface

Interfaces extending the Shareable tagging interface have this special property:
Calls to the interface methods take place across Java Card platform’s applet firewall
boundary by means of a context switch.

The shareable interface serves to identify all shared objects. Any object that needs
to be shared through the applet firewall shall directly or indirectly implement this
interface. Only those methods specified in a shareable interface are available through
the firewall.

Implementation classes can implement any number of shareable interfaces and can
extend other shareable implementation classes.

Like any Java platform interface, a shareable interface simply defines a set of service
methods. A service provider class declares that it “implements” the shareable
interface and provides implementations for each of the service methods of the

Chapter 6 Applet Isolation and Object Sharing 6-13

6.2.7

6.2.7.1

interface. A service client class accesses the services by obtaining an object reference,
casting it to the shareable interface type, and invoking the service methods of the
interface.

The shareable interfaces within the Java Card technology shall have the following
properties:

m When a method in a shareable interface is invoked, a context switch occurs to the
context of the object’s owner.

m When the method exits, the context of the caller is restored.

m Exception handling is enhanced so that the currently active context is correctly
restored during the stack frame unwinding that occurs as an exception is thrown.

Obtaining Shareable Interface Objects

Inter-applet communication is accomplished when a client applet invokes a
shareable interface method of a SIO belonging to a server applet. For this to work,
there must be a way for the client applet to obtain the SIO from the server applet in
the first place. The Java Card RE provides a mechanism to make this possible. The
Applet class and the JCSystem class provide methods to enable a client to request
services from the server.

Applet.getShareableInterfaceObject (AID, byte)
Method

This method is implemented by the server applet instance. It shall be called by the
Java Card RE to mediate between a client applet that requests to use an object
belonging to another applet, and the server applet that makes its objects available for
sharing.

The default behavior shall return null, which indicates that an applet does not
participate in inter-applet communication.

A server applet that is intended to be invoked from another applet needs to override
this method. This method should examine the clientAID and the parameter. If the
clientAID is not one of the expected AIDs, the method should return null.
Similarly, if the parameter is not recognized or if it is not allowed for the
clientAID, the method also should return null. Otherwise, the applet should
return an SIO of the shareable interface type that the client has requested.

The server applet need not respond with the same SIO to all clients. The server can
support multiple types of shared interfaces for different purposes and use
clientAID and parameter to determine which kind of SIO to return to the client.

6-14 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

6.2.7.2

6.2.8

JCSystem.getAppletShareableInterfaceObject
Method

The JCSystem class contains the method
getAppletShareableInterfaceObject, which is invoked by a client applet to
communicate with a server applet.

The Java Card RE shall implement this method to behave as follows:

1. The Java Card RE searches its internal applet table which lists all successfully
installed applets on the card for one with serveraID. If not found, null is
returned.

2. If the server applet instance is not a multiselectable applet instance and is
currently active on another logical channel, a SecurityException is thrown.
See Section 4.2, “Multiselectable Applets” on page 4-6.

3. The Java Card RE invokes this applet’s getShareableInterfaceObject
method, passing the clientAID of the caller and the parameter.

4. A context switch occurs to the server applet, and its implementation of
getShareableInterfaceObject proceeds as described in the previous section.
The server applet returns a SIO (or null).

5. getAppletShareableInterfaceObject returns the same SIO (or null) to its
caller.

For enhanced security, the implementation shall make it impossible for the client to
tell which of the following conditions caused a null value to be returned:

m The serverAID was not found.

m The server applet does not participate in inter-applet communication.

m The server applet does not recognize the clientAID or the parameter.

m The server applet does not communicate with this client.

m The server applet does not communicate with this client as specified by the
parameter.

m The applet’s getShareableInterfaceObject method throws an uncaught
exception.

Class and Object Access Behavior

A static class field is accessed when one of the following Java programming language
bytecodes is executed:

getstatic, putstatic

Chapter 6 Applet Isolation and Object Sharing 6-15

6.2.8.1

6.2.8.2

An object is accessed when one of the following Java programming language
bytecodes is executed using the object’s reference:

getfield, putfield, invokevirtual, invokeinterface, athrow,

<T>aload, <T>astore, arraylength, checkcast, instanceof
<T> refers to the various types of array bytecodes, such as baload, sastore, etc.

This list also includes any special or optimized forms of these bytecodes that can be
implemented in the Java Card VM, such as getfield_b and getfield_s_this.

Prior to performing the work of the bytecode as specified by the Java VM, the Java
Card VM will perform an access check on the referenced object. If access is denied, a
java.lang.SecurityException is thrown.

The access checks performed by the Java Card VM depend on the type and owner of
the referenced object, the bytecode, and the currently active context. They are
described in the following sections.

Accessing Static Class Fields

Bytecodes:
getstatic, putstatic
m If the Java Card RE is the currently active context, access is allowed.

m Otherwise, if the bytecode is putstatic and the field being stored is a reference
type and the reference being stored is a reference to a temporary Java Card RE
Entry Point Object or a global array, access is denied.

m Otherwise, access is allowed.

Accessing Array Objects

Bytecodes:
<T>aload, <T>astore, arraylength, checkcast, instanceof
m If the Java Card RE is the currently active context, access is allowed.

m Otherwise, if the bytecode is aastore and the component being stored is a
reference type and the reference being stored is a reference to a temporary Java
Card RE Entry Point Object or a global array, access is denied.

m Otherwise, if the array is owned by an applet in the currently active context,
access is allowed.

m Otherwise, if the array is designated global, access is allowed.

m Otherwise, access is denied.

6-16 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

6.2.8.3

6.2.8.4

6.2.8.5

Accessing Class Instance Object Fields

Bytecodes:

getfield, putfield

If the Java Card RE is the currently active context, access is allowed.

Otherwise, if the bytecode is putfield and the field being stored is a reference
type and the reference being stored is a reference to a temporary Java Card RE
Entry Point Object or a global array, access is denied.

Otherwise, if the object is owned by an applet in the currently active context,
access is allowed.

Otherwise, access is denied.

Accessing Class Instance Object Methods

Bytecodes:

invokevirtual

If the object is owned by an applet in the currently active context, access is
allowed.

Otherwise, if the object is designated a Java Card RE Entry Point Object, access is
allowed. Context is switched to the object owner’s context (shall be Java Card RE).

Otherwise, if Java Card RE is the currently active context, access is allowed.
Context is switched to the object owner’s context.

Otherwise, access is denied.

Accessing Standard Interface Methods

Bytecodes:

invokeinterface

If the object is owned by an applet in the currently active context, access is
allowed.

Otherwise, if the object is designated a Java Card RE Entry Point Object, access is
allowed. Context is switched to the object owner’s context (shall be Java Card RE).

Otherwise, if the Java Card RE is the currently active context, access is allowed.
Context is switched to the object owner’s context.

Otherwise, access is denied.

Chapter 6 Applet Isolation and Object Sharing 6-17

6.2.8.6 Accessing Shareable Interface Methods

Bytecodes:

invokeinterface

m If the object is owned by an applet in the currently active context, access is
allowed.

m Otherwise, if the object is owned by a non-multiselectable applet instance that is
not in the context of the currently selected applet instance, and that is active on
another logical channel, access is denied. See Section 4.2, “Multiselectable
Applets” on page 4-6.

m Otherwise, if the object’s class implements a Shareable interface, and if the
interface being invoked extends the Shareable interface, access is allowed.
Context is switched to the object owner’s context.

m Otherwise, if the Java Card RE is the currently active context, access is allowed.
Context is switched to the object owner’s context.

m Otherwise, access is denied.

6.2.8.7 Throwing Exception Objects

Bytecodes:

athrow

If the object is owned by an applet in the currently active context, access is
allowed.

Otherwise, if the object is designated a Java Card RE Entry Point Object, access is
allowed.

Otherwise, if the Java Card RE is the currently active context, access is allowed.

Otherwise, access is denied.

6.2.8.8 Accessing Classes

Bytecodes:

checkcast, instanceof

If the object is owned by an applet in the currently active context, access is
allowed.

Otherwise, if the object is designated a Java Card RE Entry Point Object, access is
allowed.

Otherwise, if the Java Card RE is the currently active context, access is allowed.

Otherwise, access is denied.

6-18 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

6.2.8.9

6.2.8.10

6.2.8.11

Accessing Standard Interfaces

Bytecodes:

checkcast, instanceof

If the object is owned by an applet in the currently active context, access is
allowed.

Otherwise, if the object is designated a Java Card RE Entry Point Object, access is
allowed.

Otherwise, if the Java Card RE is the currently active context, access is allowed.

Otherwise, access is denied.

Accessing Shareable Interfaces

Bytecodes:

checkcast, instanceof

If the object is owned by an applet in the currently active context, access is
allowed.

Otherwise, if the object’s class implements a Shareable interface, and if the
object is being cast into (checkcast) or is being verified as being an instance of
(instanceof) an interface that extends the Shareable interface, access is
allowed.

Otherwise, if the Java Card RE is the currently active context, access is allowed.

Otherwise, access is denied.

Accessing Array Object Methods

Note — The method access behavior of global arrays is identical to that of Java Card
RE Entry Point Objects.

Bytecodes:

invokevirtual

If the array is owned by an applet in the currently active context, access is
allowed.

Otherwise, if the array is designated a global array, access is allowed. Context is
switched to the array owner’s context (Java Card RE context).

Otherwise, if Java Card RE is the currently active context, access is allowed.
Context is switched to the array owner’s context.

Otherwise, access is denied.

Chapter 6 Applet Isolation and Object Sharing 6-19

6-20 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

CHAPTER 7

Transactions and Atomicity

A transaction is a logical set of updates of persistent data. For example, transferring
some amount of money from one account to another is a banking transaction. It is
important for transactions to be atomic: Either all of the data fields are updated, or
none are. The Java Card RE provides robust support for atomic transactions, so that
card data is restored to its original pre-transaction state if the transaction does not
complete normally. This mechanism protects against events such as power loss in
the middle of a transaction, and against program errors that might cause data
corruption should all steps of a transaction not complete normally.

7.1

Atomicity

Atomicity defines how the card handles the contents of persistent storage after a
stop, failure, or fatal exception during an update of a single object or class field or
array component. If power is lost during the update, the applet developer shall be
able to rely on what the field or array component contains when power is restored.

The Java Card platform guarantees that any update to a single persistent object or
class field will be atomic. In addition, the Java Card platform provides single
component level atomicity for persistent arrays. That is, if the smart card loses
power during the update of a data element (field in an object, class or component of
an array) that shall be preserved across CAD sessions, that data element shall be
restored to its previous value.

Some methods also guarantee atomicity for block updates of multiple data elements.
For example, the atomicity of the Util.arrayCopy method guarantees that either
all bytes are correctly copied or else the destination array is restored to its previous
byte values.

An applet might not require atomicity for array updates. The
Util.arrayCopyNonAtomic method is provided for this purpose. It does not use
the transaction commit buffer even when called with a transaction in progress.

7.2 Transactions

An applet might need to atomically update several different fields or array
components in several different objects. Either all updates take place correctly and
consistently, or else all fields or components are restored to their previous values.

The Java Card platform supports a transactional model in which an applet can
designate the beginning of an atomic set of updates with a call to the
JCSystem.beginTransaction method. Each object update after this point is
conditionally updated. The field or array component appears to be updated (reading
the field or array component back yields its latest conditional value) but the update
is not yet committed.

When the applet calls JCSystem.commitTransaction, all conditional updates are
committed to persistent storage. If power is lost or if some other system failure
occurs prior to the completion of JCSystem. commitTransaction, all
conditionally updated fields or array components are restored to their previous
values. If the applet encounters an internal problem or decides to cancel the
transaction, it can programmatically undo conditional updates by calling
JCSystem.abortTransaction.

7.3 Transaction Duration

A transaction always ends when the Java Card RE regains programmatic control
upon return from the applet’s select, deselect, process, uninstall, or
install methods. This is true whether a transaction ends normally, with an
applet’s call to commitTransaction, or with an abortion of the transaction (either
programmatically by the applet, or by default by the Java Card RE). For more details
on transaction abortion, refer to Section 7.6, “Aborting a Transaction” on page 7-3.

Transaction duration is the life of a transaction between the call to
JCSystem.beginTransaction and either a call to commitTransaction or an
abortion of the transaction.

7-2 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

7.4

Nested Transactions

The model currently assumes that nested transactions are not possible. There can be
only one transaction in progress at a time. If JCSystem.beginTransaction is
called while a transaction is already in progress, a TransactionException is
thrown.

The JCSystem. transactionDepth method is provided to allow you to determine
if a transaction is in progress.

7.5

Tear or Reset Transaction Failure

If power is lost (tear) or the card is reset or some other system failure occurs while a
transaction is in progress, the Java Card RE shall restore to their previous values all
fields and array components conditionally updated since the previous call to
JCSystem.beginTransaction.

This action is performed automatically by the Java Card RE when it reinitializes the
card after recovering from the power loss, reset, or failure. The Java Card RE
determines which of those objects (if any) were conditionally updated, and restores
them.

Note — The contents of an array component that is updated using the
Util.arrayCopyNonAtomic method or the Util.arrayFillNonAtomic method
while a transaction is in progress are not predictable following a tear or reset during
that transaction.

Note — Object space used by instances created during the transaction that failed due
to power loss or card reset can be recovered by the Java Card RE.

7.6

Aborting a Transaction

Transactions can be aborted either by an applet or by the Java Card RE.

Chapter 7 Transactions and Atomicity ~ 7-3

7.6.1

7.6.2

7.6.3

Note — The contents of an array component that is updated using the
Util.arrayCopyNonAtomic method or the Util.arrayFillNonAtomic method
while a transaction is in progress are not predictable following the abortion of the
transaction.

Programmatic Abortion

If an applet encounters an internal problem or decides to cancel the transaction, it
can programmatically undo conditional updates by calling
JCSystem.abortTransaction. If this method is called, all conditionally updated
fields and array components since the previous call to
JCSystem.beginTransaction are restored to their previous values, and the
JCSystem. transactionDepth value is reset to 0.

Abortion by the Java Card RE

If an applet returns from the select, deselect, process, or install methods
when an applet initiated transaction is in progress, the Java Card RE automatically
aborts the transaction and proceeds as if an uncaught exception was thrown.

If the Java Card RE catches an uncaught exception from the select, deselect,
process, or install methods when an applet initiated transaction is in progress,
the Java Card RE automatically aborts the transaction.

Note — The abortion of a transaction by the Java Card RE does not directly affect the
response status sent to the CAD. The response status is determined as described in
Section 3.3, “process Method” on page 3-3.

Cleanup Responsibilities of the Java Card RE

Object instances created during the transaction that is being aborted can be deleted
only if references to these deleted objects can no longer be used to access these
objects. The Java Card RE shall ensure that a reference to an object created during
the aborted transaction is equivalent to a null reference.

7-4 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

Alternatively, programmatic abortion after creating objects within the transaction
can be deemed to be a programming error. When this occurs, the Java Card RE may,
to ensure the security of the card and to avoid heap space loss, lock up the card
session to force tear or reset processing.

7.7 Transient Objects and Global Arrays

Only updates to persistent objects participate in the transaction. Updates to transient
objects and global arrays are never undone, regardless of whether or not they were
“inside a transaction.”

7.8 Commit Capacity

Because platform resources are limited, the number of bytes of conditionally
updated data that can be accumulated during a transaction is limited. The Java Card
technology provides methods to determine how much commit capacity is available on
the implementation. The commit capacity represents an upper bound on the number
of conditional byte updates available. The actual number of conditional byte updates
available may be lower due to management overhead.

A TransactionException is thrown if the commit capacity is exceeded during a
transaction.

7.9 Context Switching

Context switches shall not alter the state of a transaction in progress. If a transaction
is in progress at the time of a context switch (see Section 6.1.2, “Contexts and
Context Switching” on page 6-2), updates to persistent data continue to be
conditional in the new context until the transaction is committed or aborted.

Chapter 7 Transactions and Atomicity ~ 7-5

7-6 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

CHAPTER 8

Remote Method Invocation Service

Java Card platform Remote Method Invocation (Java Card RMI) is a subset of the
Java platform Remote Method Invocation (RMI) system. It provides a mechanism for
a client application running on the CAD platform to invoke a method on a remote
object on the card. The on-card transport layer for Java Card RMI is provided in the
package javacard. framework.service by the class RMIService. It is designed
as a service requested by the Java Card RMI-based applet when it is the currently
selected applet.

The Java Card RMI message is encapsulated within the APDU object passed into the
RMIService methods.

8.1

8.1.1

Java Card Platform RMI

This section defines the subset of the RMI system that is supported by Java Card
platform RMI.

Remote Objects

A remote object is one whose remote methods can be invoked remotely from the
CAD client. A remote object is described by one or more remote interfaces. A remote
interface is an interface that extends, directly or indirectly, the interface
java.rmi.Remote. The methods of a remote interface are referred to as remote
methods. A remote method declaration includes the exception
java.rmi.RemoteException (or one of its superclasses such as
java.io.IOException or java.lang.Exception) in its throws clause.
Additionally, in the remote method declaration, a remote object declared as the
return value must be declared as the remote interface, not the implementation class
of that interface.

8-1

8.1.1.1

8.1.1.2

8.1.1.3

Java Card RMI imposes additional constraints on the definition of remote methods.
These constraints are a result of the Java Card platform language subset and other
feature limitations.

Parameters and Return Values

The parameters of a remote method must only include parameters of the following
types:

m Any supported primitive data types

m Any single-dimension array of a supported primitive data type

The return value of a remote method must only be one of the following types:

Any supported primitive data type

Any single-dimension array type of a supported primitive data type
Any remote interface type

A void return

All parameters, including array parameters, are always transmitted by value during
the remote method invocation. The return values from a remote method are
transmitted by value for primitive types and arrays. Return values that are remote
object references are transmitted by reference using a remote object reference
descriptor.

Exceptions

Java Card RMI uses the following simplified model for returning exceptions thrown
by remote methods:

m When an exception defined in the Java Card API is thrown by a remote method,
the exact exception type and the embedded reason code is transmitted to the
client application. In essence, the exception object is transmitted by value.

m When an exception not defined in the Java Card API is thrown by a remote
method, the “closest” superclass exception type from the API and the embedded
reason code is transmitted to the client application. In this case, the “closest” API
defined superclass exception object is transmitted by value. The client application
can distinguish an inexact exception from an exact one.

Functional Limitations

The definition of the supported subset of Java Card RMI for the Java Card Platform,
Version 2.2.2, implies functional limitations during the execution of Java Card API
remote methods:

8-2 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

m CAD client application remote objects cannot be passed as arguments to remote
methods.

m Card remote objects cannot be passed as arguments to remote methods.
m Applets on the card cannot invoke remote methods on the CAD client.

m Method argument data and return values, along with the Java Card RMI protocol
overhead, must fit within the size constraints of an APDU command and APDU
response, respectively.

8.2

8.2.1

RMI Messages

The Java Card RMI message protocol consists of two commands that are used to:

m Get the initial remote object reference for the Java Card RMI based applet. The
initial remote object reference is the seed remote object that the CAD client
application needs to begin remote method invocations.

m Send a remote method invocation request to the card.

To ensure that the protocol is compatible with all applications, the SELECT FILE
command is used for getting the initial reference. The response to the SELECT FILE
command allows the remote method invocation command itself to be customized by
the applet.

Applet Selection

The selection command used to retrieve the initial reference is the ISO 7816-4
SELECT FILE command, with the following options in the header:

m Direct selection by DF Name, that is, selection by AID. This is the normal option
used to select all applet instances in the Java Card platform.

m Return FCI (File Control Information - ISO7816-4), optional template. This is an
additional option that indicates that the applet is expected to return FCI
information.

In addition, an alternate RFU variant of the Return FCI option is required to
configure the RMIService for an alternate Java Card RMI protocol format. For
more details see Section 8.4.1, “SELECT FILE Command” on page 8-12.

The answer to this command is a constructed TLV (tag-length-value) data structure
(ISO 7816-6) that includes the following information:

m The byte to be used as instruction byte (INS) for subsequent invocation
commands.

Chapter 8 Remote Method Invocation Service 8-3

m The initial remote object reference descriptor. The descriptor includes the remote
object identifier and information to identify the associated class.

8.2.2 Method Invocation

To request a method invocation, the CAD client provides the following information:

m The remote object identifier. This identifier is used to uniquely identify the
object on the card.

m The invoked method identifier. This designator uniquely identifies the remote
method within the remote object class or superclass.

m The values of the arguments. These values are raw values for primitive data
types, and for arrays, a length followed by the values.

The response to the invocation request may include one of the following items:

m A primitive return value. This is a raw primitive data type value.

m An array of primitive components. This is a length followed by the raw primitive
data type values.

m A remote object reference descriptor. The descriptor includes the remote object
identifier and information to instantiate a proxy instance of the remote card
object.

m An exception. This is thrown by the remote method.

8.3 Data Formats

This section describes the formats used to encapsulate the following;:
m A remote object identifier that identifies the remote object on the card.

m A remote object reference descriptor that describes the remote object on the card
for the CAD client.

m A method identifier that identifies the remote method on the card.

m The method parameters and return values.

This section uses a C-like structure notation similar to that used in the Virtual
Machine Specification, Java Card Platform, Version 2.2.2.

8-4 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

8.3.1

8.3.2

Remote Object Identifier

A remote object identifier is a 16-bit unsigned number that uniquely identifies a
remote object on the card.

Remote Object Reference Descriptor

The remote object reference descriptor includes the remote object identifier, as well
as information to instantiate the proxy class on the CAD client. The remote object
reference descriptor uses one of two alternate formats. The representation based on
the name of the class uses the remote_ref_with_class format. The
representation based on the names of the implemented remote interfaces uses the
remote_ref with_interfaces format.

A remote object reference descriptor is therefore defined as follows:

remote_ref_descriptor {
union {
ref_null remote_ref null
remote_ref with_class remote_ref c
remote_ref_with_interfaces remote_ref_i

}

Note — Even though this structure uses the C-like “union” notation, the lengths of
the alternate representations within the union do not use any padding to normalize
their lengths.

The following items are in the remote_ref_descriptor structure:

ref_null is the representation of a null reference using the following format:

ref null {
u2 remote_ref_id = OxFFFF
}

The remote_ref_id item must be the reserved value 0xFFFF.

remote_ref_with_class is the definition of a remote object reference using the
class name and uses the following format:

remote_ref_with_class {
u2 remote_ref _id != OxFFFF
ul hash modifier_length
ul hash_modifier[hash_modifier_length]
ul pkg name_length
ul package_name[pkg_name_length]
ul class_name_length
ul class_name[class_name_length]

Chapter 8 Remote Method Invocation Service 8-5

The remote_ref_id item represents the remote reference identifier. The value of
this field must not be 0xFFFF, which denotes the null reference.

The hash_modifier item is an UTF-8 string of length specified in the
hash_modifier_length item and is used to ensure that method identifier hash
codes are unique.

The pkg_name_length item is the number of bytes in the package_name item
to represent the name of the package in UTF-8 string notation. The value of this
item must be non-zero.

The package_name item is the variable length representation of the fully
qualified name of the package which contains the remote class in UTF-8 string
notation. The fully qualified name of the package represented here uses the
internal form wherein the ASCII periods (.) that normally separate the
indentifiers that make up the fully qualified name are replaced by ASCII forward
slashes (/). For example, the internal form of the normally fully qualified package
name of the package java.rmi is java/rmi.

The class_name_length item is the number of bytes in the class_name item
to represent the name of the remote class in UTF-8 string notation. The value of
this item must be non-zero.

The class_name item is the variable length representation of the name of the
implementation class (or superclass) of the remote object in UTF-8 string notation.
The class referenced in the remote object reference descriptor must directly
implement a remote interface. If the implementation class of the remote object
does not directly implement a remote interface, the class name of the “closest”
superclass of the implementation class which directly implements a remote
interface must be used.

remote_ref_with_interfaces item is the definition of a remote object reference
using the names of the interfaces and uses the following format:
remote_ref_with_interfaces {
u2 remote_ref _id != OxFFFF
ul hash _modifier_length
ul hash_modifier[hash_modifier_length]
ul remote_interface_count
rem_interface_def remote_interfaces|[remote_interface_count]
}
The definition of the remote_ref_id, the hash_modifier_ length and the
hash_modifier item are the same as that described earlier in the
remote_ref_with_class structure.

The remote_interface_count item indicates the number of
rem_interface_def format entries in the remote_interfaces item. This
number must be less than 16.

The remote_interfaces item comprises a sufficient list of
rem_interface_def format entries containing the names of remote interfaces
implemented. This list is such that when combined with their remote

8-6 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

8.3.3

superinterfaces, the complete set of remote interfaces implemented by the remote
object can be enumerated. The rem_interface_def item uses the following
format:

rem_interface_def {
ul pkg_name_length
ul package_name[pkg_name_length]
ul interface_name_length
ul interface_name|[interface_name_length]

}

The items in the rem_interface_def structure are as follows:

The pkg_name_length item is the number of bytes used in the package_name
item to represent the name of the package in UTF-8 string notation. If the value of
this item is 0, it indicates that the package name of the previous
remote_interfaces item must be used instead. The value of this item in
remote_interfaces[0] must not be 0.

The package_name item is the pkg_name_length byte length representation of
the fully qualified name of the package which contains the remote interface in
UTE-8 string notation. The fully qualified name of the package represented here
uses the internal form wherein the ASCII periods (.) that normally separate the
indentifiers that make up the fully qualified name are replaced by ASCII forward
slashes (/). For example, the internal form of the normally fully qualified package
name of the package java.rmi is java/rmi.

The interface_name_length item is the number of bytes in the
interface_name item to represent the name of the remote interface in UTF-8
string notation.

The interface_name item is the variable length representation of the name of
the remote interface implemented by the remote object in UTF-8 string notation.

Method Identifier

A method identifier is always used in association with a remote object reference. A
method identifier is defined as follows:

u2 method_id

The method_id is a unique 16-bit hashcode identifier of the remote method within
the remote class. This 16-bit hashcode consists of the first two bytes of the SHA-1
message digest function performed on a class specific hash modifier string, followed
by the name of the method, followed by the method descriptor representation in
UTF-8 format. Representation of a method descriptor is the same as that described in
The Java Virtual Machine Specification (Section 4.3.3).

Chapter 8 Remote Method Invocation Service 8-7

8.3.4

8.3.4.1

8.3.4.2

Parameter Encoding

Every parameter has the following generic format:

param {
ul valuel]

}

Primitive Data Type Parameter Encoding

Primitive data types void, boolean, byte, short and int are respectively
encoded as follows:

void_param {
}
boolean_param {
ul boolean_value
}
byte_param {
sl byte_value
}
short_param ({
s2 short_value
}
int_param {
s4d int_value

}

The boolean_value field may only take the values 0 (for false) and 1 (for true).
All the other fields can take any value in their range.

Array Parameter Encoding

The representation of the null array parameter and arrays of the boolean, byte,
short and int component types include the length information and are
respectively encoded as follows:

null_array_param {
ul length = OxFF
}
boolean_array param {
ul length != 0xFF
ul boolean_value[length]
}
byte_array_param {
ul length != 0xFF
sl byte_value[length]
}
short_array_param {
ul length != 0xXFF
s2 short_value[length]
}

int_array_param {

8-8 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

8.3.5

8.3.5.1

ul length != 0XFF
s4 int_value[length]
}

Note — The length field in each of this array data structure represents the number
of elements of the array, not its size in bytes.

Return Value Encoding

A return value may be any of the parameter types described in the previous section
encapsulated within a normal response format. In addition, the return value may
represent a remote object reference type, a null return type, various exceptions and
the error type.

The generic structure of a return value is as follows:

return_response {
ul tag
ul[] value

}

The return value using the return_response encoding is always followed by a
good completion status code of 0x9000 in the response APDU.

Normal Response Encoding

A normal response encapsulates primitive return types, arrays of primitive data
types using the same format for the param item, as described in Section 8.3.4,
“Parameter Encoding” on page 8-8, using the following format:
normal_param_response {

ul normal_tag = 0x81

param normal_value

}

The null_array_param format described in Section 8.3.4, “Parameter Encoding”
on page 8-8 is not used to represent a null array reference. Instead, a null object
reference, as well as a null array reference, shares the following common format:
normal_null_response {

ul normal_tag = 0x81

ref_null null_array_or_ref

}

In addition, a remote object reference descriptor type is also encapsulated using the
normal response format as follows:

normal_ref_response {

Chapter 8 Remote Method Invocation Service 8-9

ul normal_tag = 0x81
remote_ref_descriptor remote_ref

}

8.3.5.2 Exception Response Encoding

Following is the encoding when an API defined exception is thrown by the remote

method. It may be returned during any remote method invocation. The reason item
is the Java Card platform exception reason code, or 0 for a java.lang, java.rmi
or java.io exceptions:

exception_response {
ul exception_tag = 0x82
ul exception_type
s2 reason

}
Following are the values for the exception_type item:
java.lang.Throwable = 0x00
java.lang.ArithmeticException = 0x01
java.lang.ArrayIndexOutOfBoundsException = 0x02
java.lang.ArrayStoreException = 0x03
java.lang.ClassCastException = 0x04
java.lang.Exception = 0x05
java.lang.IndexOutOfBoundsException = 0x06
java.lang.NegativeArraySizeException = 0x07
java.lang.NullPointerException = 0x08
java.lang.RuntimeException = 0x09
java.lang.SecurityException = 0x0A
java.io.IOException = 0x0B
java.rmi.RemoteException = 0x0C
javacard. framework.APDUException = 0x20
javacard. framework.CardException = 0x21
javacard. framework.CardRuntimeException = 0x22
javacard. framework.ISOException = 0x23
javacard. framework.PINException = 0x24
javacard. framework.SystemException = 0x25
javacard. framework.TransactionException = 0x26
javacard. framework.UserException = 0x27
javacard.security.CryptoException = 0x30

javacard. framework.service.ServiceException = 0x40

8-10 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

8.3.5.3

javacardx.biometry.BioException = 0x50
javacardx.external .ExternalException = 0x60
javacardx. framework.tlv.TLVException = 0x70

javacardx. framework.util.UtilException = 0x80

Following is the encoding when a user defined exception is thrown by the remote
method. The exception_type item represents the closest API defined exception
type. It may be returned during any remote method invocation. The reason item is
the Java Card platform exception reason code, or 0 for the subclasses of java. lang,
java.rmi or java.io exceptions:
exception_subclass_response {

ul exception_subclass_tag = 0x83

ul exception_type

s2 reason

}

Error Response Encoding

The following encoding represents an error condition on the card. The error may
occur due to marshalling, unmarshalling or resource-related problems.
error_response {

ul error_tag = 0x99

s2 error_detail

}
Following are the values of the error_detail item:

The Remote Object Identifier is invalid or ineligible for Java Card RMI = 0x0001
The Remote Method could not be identified = 0x0002

The Remote Method signature did not match the parameter format = 0x0003
Insufficient resources available to unmarshall parameters = 0x0004

Insufficient resources available to marshall response = 0x0005

Java Card Remote Method Invocation protocol error = 0x0006

Internal Error occurred = 0XFFFF

8.4

APDU Command Formats

Section 8.3, “Data Formats” on page 8-4 described the various elements included in
the data portion of the Java Card RMI messages. This section describes the complete
format of the APDU commands: the header as well as the data portion containing
the message elements described earlier.

Chapter 8 Remote Method Invocation Service 8-11

8.4.1

Note — Java Card RMI message protocol supports only the 1 byte encodings of the
Lc and Le values of the APDU data length.

SELECT FILE Command

TABLE 8-1 lists the formats required for the Select command for an RMI-based applet.

Note — (%b) indicates binary notation using bit numbering as in the ISO 7816
specification. The most significant bit is b8. The least significant bit is bl. An “x”
notation represents a “don’t care”.

TABLE 8-1 Select File Command

Field Value Description

CLA %$b000000cc The cc in bits (b2,b1) denote the origin logical
or channels number in the range 0-3.
%b0100dddd The dddd in bits (b4-b1) denote the origin logical

channel number 4-19 using 0 origin notation.
See TABLE 4-1 for CLA field encoding format.

INS 0xA4 SELECT FILE
P1 0x04 Select by AID
P2 %Db000x00xx Return FCI information. The bits (b2,b1) are used

for partial selection, if supported. If bit b5 is 1, the
remote reference descriptor uses the
remote_ref_with_interfaces format,
otherwise it uses the alternate
remote_ref_with_class format.

Lc Lc Length of the AID
Data AID AID of the applet to be selected (between 5 and 16
bytes)

Following is the format of the response. Note that the applet may extend the format
to include additional information, if necessary before sending the response back to
the CAD. The additional information must retain the TLV format and must not
introduce any additional information under the jc_rmi_data_tag.
select_response {

ul fci_tag = 0x6F

ul fci_length

ul application_data_tag = 0x6E
ul application_data_length

8-12 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

ul jc_rmi_data_tag = Ox5E

ul jc_rmi_data_length

u2 version = 0x0202

ul invoke_ins

union {
normal_ref_response normal_initial_ref
normal_null_response null_initial_ref
error_response initial_ref_error
} initial_ref

}

The jc_rmi_data_length item is the combined length in bytes of the version
item, invoke_ins item and the initial_ref item. The
application_data_lengthitemis jc_rmi_data_length + 2. The
fci_length item is application_data_length + 2.

The response data includes invoke_ins, the instruction byte to use in the method
invocation command. It also includes initial_ref, the initial remote object
reference descriptor. The initial_ref item corresponds to the remote object
designated as the initial reference to the RMIService instance during construction.
The initial_ref item can be a normal_ref_response item described in
Section 8.3.5.1, “Normal Response Encoding” on page 8-9 or a null representation
using a normal_null_response item described in that same section, if the initial
remote reference object is not enabled for remote access. Also, note that if an error
occurs during the marshalling of the initial remote reference descriptor, an error
response is returned in initial_ref instead of using the error_response item
format described in Section 8.3.5.3, “Error Response Encoding” on page 8-11.

Note — Even though the select_response structure uses the C-like “union”
notation, the lengths of the alternate representations within the union do not use any
padding to normalize their lengths.

The format of the remote_ref_descriptor to be used in this response as well as
all subsequent responses (remote_ref_with_class or
remote_ref_with_interfaces) is determined by the value of the P2 byte of the
SELECT FILE command.

Note — Only the RMIService instance that processes the SELECT FILE command
sets (or changes) the format of the remote object reference descriptor based on the
value of the P2 byte. Once set or changed, the RMIService instance uses only that
format in all Java Card RMI responses it generates.

Chapter 8 Remote Method Invocation Service 8-13

8.4.2 INVOKE Command

TABLE 8-2 lists the format required for the Invoke command for a remote method
invocation request.

TABLE 8-2 Invoke Command Format

Field Value Description

CLA %b1000 yycc or The cc in bits (b2,b1) denotes the origin logical
%b1010 yycc or channel number in the range 1-3. The yy in bits (b4,b3)
%b11y0 dddd of the type 4 formats denote secure messaging.

The dddd in bits (b4-b1) denote the origin logical
channel number in the range 4-19 using 0 origin
notation. The y in bit b6 of the type 16 format denotes
secure messaging.

See TABLE 4-2 for CLA field encoding formats.

INS value of invoke_ins returned in the previous
invoke_ins select_response

P1 02 RMI major version #

P2 02 RMI minor version #

Data As described below As described below

Following is the structure of the data part of the request command:

invoke_data {
u2 object_id
u2 method_id
param parameters]|]

}

The object_id is the remote object identifier of the object whose remote method is
to be invoked. The method to be invoked is specified by the method_id item, and
each parameter is specified by a param structure.

The response format uses the return_response structure as described in
Section 8.3.5, “Return Value Encoding” on page 8-9.

8.5

8-14

RMIService Class

The RMIService class implements the Java Card RMI protocol and processes the
RMI access commands described earlier: SELECT FILE and INVOKE. It performs the
function of the transport layer for Java Card RMI commands on the card.

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

8.5.1

8.5.2

The RMIService object maintains a list of remote objects that have been returned
during the current applet selection session. It enforces the following rules for the
lifetime of the remote object references:

m A remote reference is valid only when the INVOKE command is processed by the
RMIService instance that returned the reference.

m A remote reference is valid with any applet instance in the package of the applet
instance that returned it.

m A remote reference is valid as long as at least one applet instance within the same
package has been active at all times since the point in time when the remote
reference was returned.

m A valid remote object cannot be garbage collected during the lifetime of the
remote reference.

In addition, a remote object reference descriptor of an object must only be returned
from the card if it is exported. See the class

javacard. framework.service.CardRemoteObject. Otherwise, an exception is
thrown. See the class javacard. framework.service.RMIService.

setInvokeInstructionByte Method

This method sets the value of invoke_ins described in Section 8.4.1, “SELECT FILE
Command” on page 8-12, which is returned in the response to the SELECT FILE
command. The change in the Java Card RMI protocol only goes into effect the next
time this RMIService instance processes the SELECT FILE command. If this
method is not called, the default instruction byte value
(DEFAULT_RMI_INVOKE_INSTRUCTION) is used.

processCommand Method

The processCommand method of the RMIService class is invoked by the applet to
process an incoming RMI message. RMIService collaborates with other services by
using the common service format (CSF) in the APDU buffer. It processes only the
incoming Java Card RMI APDU commands and produces output as described in the
previous sections.

When called with a SELECT FILE command with format described in Section 8.4.1,
“SELECT FILE Command” on page 8-12, this method builds a response APDU as
described in that section.

When called with an INVOKE command with the format described in Section 8.4.2,
“INVOKE Command” on page 8-14, this method must call the specified remote
method of the identified remote object with the specified parameters. It must catch

Chapter 8 Remote Method Invocation Service 8-15

all exceptions thrown by the remote method. When an exception is caught or the
remote method returns, this method must build a response APDU in the format
described in Section 8.4.2, “INVOKE Command” on page 8-14.

Prior to invoking the remote method, the following errors must be detected and
must result in an error response in the format described in Section 8.3.5.3, “Error
Response Encoding” on page 8-11:

m The remote object identifier is not valid.
m The remote object identifier was not returned during the current selection session.

m The method identifier does not match any remote methods in the remote class
associated with the identified remote object.

m The length of the INVOKE message is inconsistent with the signature of the
remote method.

m There is insufficient space to allocate array parameters for the remote method.
The implementation must support at least eight input parameters of type array.

In addition, upon return from the remote method, the following errors must be
detected and must result in an error response in the format described in
Section 8.3.5.3, “Error Response Encoding” on page 8-11:

m There is insufficient space to allocate the array response from the remote method.
The implementation must support an APDU buffer of at least 133 bytes.

m A remote object is being returned, and its associated remote object identifier was
not previously returned during the current selection session, and there is
insufficient space to add the remote object identifier to the session remote object
identifier list. The implementation must support at least eight remote object
identifiers during a selection session.

In addition, the object access firewall rules must be enforced in a manner similar to
that of the invokevirtual instruction (Section 6.2.8.4, “Accessing Class Instance
Object Methods” on page 6-17) by this method when a remote method is invoked.
Only methods of a remote object owned by the context of the currently selected
applet may be invoked.

Allocation of Incoming Objects

Because array parameters to remote methods are transmitted by value, array objects
need to be allocated on the card when a remote method with array arguments is
invoked via the INVOKE command. Global array objects (Section 6.2.2, “Global
Arrays” on page 6-9) must be used for incoming remote method arguments. Global
arrays have the following properties:

m They are owned by the Java Card RE, but they can be freely accessed from all
contexts.

m They are temporary objects and cannot be stored in any object.

8-16 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

m They are not subject to transactions.

The implementation may choose to maintain the data portion of these global array
objects used for remote method parameters in the APDU buffer itself.

Chapter 8 Remote Method Invocation Service 8-17

8-18 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

CHAPTER 9

API Topics

The topics in this chapter complement the requirements specified in the Application
Programming Interface, Java Card Platform, Version 2.2.2.

9.1

Resource Use Within the API

Unless specified in the Application Programming Interface, Java Card Platform, Version
2.2.2, the implementation shall support the invocation of API instance methods, even
when the owner of the object instance is not the currently selected applet. Unless
specifically called out, the implementation shall not use resources such as transient
objects of CLEAR_ON_DESELECT type.

9.2

Exceptions Thrown by API Classes

All exception objects thrown by the API implementation shall be temporary Java
Card RE Entry Point Objects. Temporary Java Card RE Entry Point Objects cannot be
stored in class variables, instance variables, or array components (see Section 6.2.1,
“Java Card RE Entry Point Objects” on page 6-8).

9-1

9.3 Transactions Within the API

Unless explicitly called out in the API descriptions, implementation of the Java Card
API methods shall not initiate or otherwise alter the state of a transaction in
progress.

Unless explicitly called out in the API descriptions, updates to internal
implementation state within the API objects must be conditional. Internal state
updates must participate in any ongoing transaction.

9.4 APDU Class

The APDU class encapsulates access to the ISO 7816-4 based 1/0O across the card serial
line. The APDU class is designed to be independent of the underlying I/O transport
protocol.

The Java Card RE may support T=0 or T=1 transport protocols or both.

9.4.1 T=0 Specifics for Outgoing Data Transfers

The setOutgoing and setOutgoingNoChaining methods in the APDU class are
used to specify that data needs to be returned to the CAD. These methods return the
expected length (Le) value as follows when extended length semantics are not
enabled (see Section 9.4.4.1, “Extended Length API Semantics” on page 9-7):

ISO 7816-4 CASE 1: Not applicable. Assume Case 2
ISO 7816-4 CASE 2:P3 (If P3=0, 256)

ISO 7816-4 CASE 3: Not applicable. Assume Case 4
ISO 7816-4 CASE 4:256

For compatibility with legacy CAD/terminals that do not support block chained
mechanisms, the APDU class allows a non-chained transfer mode selection via the
setOutgoingNoChaining method. The related behaviors are discussed in the
following sections.

9-2 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

94.1.1

Constrained Transfers With No Chaining

When the no chaining mode of output transfer is requested by the applet by calling
the setOutgoingNoChaining method, the following protocol sequence shall be
followed:

When the no chaining mode is used (that is, after the invocation of the
setOutgoingNoChaining method), calls to the waitExtension method shall
throw an APDUException with reason code ILLEGAL_USE.

Notation
Le = CAD expected length.

Lr = Applet response length set via setOutgoingLength method.

<INS> = the protocol byte equal to the incoming header INS byte, which indicates
that all data bytes will be transferred next.

<~INS> = the protocol byte that is the complement of the incoming header INS byte,
which indicates that 1 data byte will be transferred next.

<SW1,5W2> = the response status bytes as in ISO7816-4.
ISO 7816-4 CASE 2

Le == Lr

1. The card sends Lr bytes of output data using the standard T=0 <INS> or <~INS>
procedure byte mechanism.

2. The card sends <SW1,SW2> completion status on completion of the
Applet.process method.

Lr < Le
1. The card sends <0x61,Lr> completion status bytes
2. The CAD sends GET RESPONSE command with Le = Lr.

3. The card sends Lr bytes of output data using the standard T=0 <INS> or <~INS>
procedure byte mechanism.

4. The card sends <SW1,SW2> completion status on completion of the
Applet.process method.

Chapter 9 API Topics 9-3

9.4.1.2

Lr>Le

1. The card sends Le bytes of output data using the standard T=0 <INS> or <~INS>
procedure byte mechanism.

2. The card sends <0x61,(Lr-Le)> completion status bytes
3. The CAD sends GET RESPONSE command with new Le <= Lr.

4. The card sends (new) Le bytes of output data using the standard T=0 <INS> or
<~INS> procedure byte mechanism.

5. Repeat steps 2-4 as necessary to send the remaining output data bytes (Lr) as
required.

6. The card sends <SW1,SW2> completion status on completion of the
Applet.process method.

ISO 7816-4 CASE 4

In Case 4, Le is determined after the following initial exchange:

1. The card sends <0x61,Lr status bytes>

2. The CAD sends GET RESPONSE command with Le <= Lr.

The rest of the protocol sequence is identical to CASE 2 described above.

If the applet aborts early and sends less than Le bytes, zeros shall be sent instead to
fill out the length of the transfer expected by the CAD.

Regular Output Transfers

When the no chaining mode of output transfer is not requested by the applet (that is,
the setOutgoing method is used), any ISO/IEC 7816-3/4 compliant T=0 protocol
transfer sequence may be used.

Note — The waitExtension method may be invoked by the applet at any time. The
waitExtension method shall request an additional work waiting time (ISO/IEC
7816-3:2004) using the 0x60 procedure byte.

9-4 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

9.4.1.3

9.4.2

9421

Additional T=0 Requirements

At any time, when the T=0 output transfer protocol is in use, and the APDU class is
awaiting a GET RESPONSE command from the CAD in reaction to a response status
of <0x61, xx> from the card, if the CAD sends in a different command on the same
origin logical channel, or a command on a different origin logical channel, the
sendBytes or the sendBytesLong methods shall throw an APDUException with
reason code NO_TO0_GETRESPONSE.

At any time, when the T=0 output transfer protocol is in use, and the APDU class is
awaiting a command reissue from the CAD in reaction to a response status of <0x6C,
xx> from the card, if the CAD sends in a different command on the same origin
logical channel, or a command on a different origin logical channel, the sendBytes
or the sendBytesLong methods shall throw an APDUException with reason code
NO_TO_REISSUE.

Calls to sendBytes or sendBytesLong methods after the NO_T0_GETRESPONSE
exception or the NO_T0_REISSUE exception is thrown, shall result in an
APDUException with reason code ILLEGAL_USE. If an ISOException is thrown
by the applet after the NO_T0_GETRESPONSE exception or the NO_T0_REISSUE
exception is thrown, the Java Card RE shall discard the response status in its reason
code. The Java Card RE shall restart APDU processing with the newly received
command and resume APDU dispatching.

T=1 Specifics for Outgoing Data Transfers

The setOutgoing and setOutgoingNoChaining methods in the APDU class are
used to specify that data needs to be returned to the CAD. These methods return the
expected length (Le) value as follows when extended length semantics are not
enabled (see Section 9.4.4.1, “Extended Length API Semantics” on page 9-7):
ISO 7816-4 CASE 1: O
ISO 7816-4 CASE 2: Le (If Le=0, 256)
ISO 7816-4 CASE 3: 0

4:

ISO 7816-4 CASE Le (If Le=0, 256)

Constrained Transfers With No Chaining
When the no chaining mode of output transfer is requested by the applet by calling

the setOutgoingNoChaining method, the following protocol specifics shall be
followed:

Chapter 9 API Topics 9-5

9422

Notation
Le = CAD expected length.

Lr = Applet response length set via setOutgoingLength method.

The transport protocol sequence shall not use block chaining. Specifically, the M-bit
(more data bit) shall not be set in the PCB of the I-blocks during the transfers
(ISO/IEC 7816-3:2004). The entire outgoing data (Lr bytes) shall be transferred in one
I-block.

If the applet aborts early and sends less than Lr bytes, zeros shall be sent instead to
complete the remaining length of the block.

Note — When the no chaining mode is used (meaning, after the invocation of the
setOutgoingNoChaining method), calls to the waitExtension method shall
throw an APDUException with reason code ILLEGAL_USE.

Regular Output Transfers

When the no chaining mode of output transfer is not requested by the applet
(meaning, the setOutgoing method is used) any ISO/IEC 7816-3/4 compliant T=1
protocol transfer sequence may be used.

Note — The waitExtension method may be invoked by the applet at any time. The
waitExtension method shall send an S-block command with WTX request of INF
units, which is equivalent to a request of 1 additional work waiting time in T=0
mode. See ISO/IEC 7816-3:2004.

Chain Abortion by the CAD

If the CAD aborts a chained outbound transfer using an S-block ABORT request (see
ISO/IEC 7816-3:2004), the sendBytes or sendBytesLong method shall throw an
APDUException with reason code T1_IFD_ABORT.

Calls to sendBytes or sendBytesLong methods from this point on shall result in
an APDUException with reason code ILLEGAL_USE. If an ISOException is
thrown by the applet after the T1_IFD_ABORT exception is thrown, the Java Card RE
shall discard the response status in its reason code. The Java Card RE shall restart
APDU processing with the newly received command, and resume APDU
dispatching.

9-6 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

9.4.3

943.1

944

944.1

T=1 Specifics for Incoming Data Transfers

Incoming Transfers Using Chaining

Chain Abortion by the CAD

If the CAD aborts a chained inbound transfer using an S-block ABORT request (see
ISO/IEC 7816-3:2004), the setIncomingAndReceive or receiveBytes method
shall throw an APDUException with reason code T1_IFD_ABORT.

Calls to receiveBytes, sendBytes or sendBytesLong methods from this point
on shall result in an APDUException with reason code ILLEGAL_USE. If an
ISOException is thrown by the applet after the T1_IFD_ABORT exception is
thrown, the Java Card RE shall discard the response status in its reason code. The
Java Card RE shall restart APDU processing with the newly received command, and
resume APDU dispatching.

Extended Length APDU Specifics

The card may support extended length APDU exchanges with the CAD as described
in the ISO 7816-3 Specification. If the implementation does not support extended
length APDU formats and an APDU with extended length is received by the card or
an APDU with extended length value greater than 32767 is requested, the Java Card
RE shall respond to the CAD with the error response status SW_WRONG_LENGTH.

If the implementation supports extended length APDU formats, extended length
semantics shall be enabled at the APDU class methods only if the currently selected
applet implements the javacardx.apdu.ExtendedLength interface. If an APDU
is received by the card that requires extended length semantics at the APDU class
methods, but the currently selected applet does not the implement the tagging
interface, the Java Card RE shall respond to the CAD with the error response status
SW_WRONG_LENGTH.

Extended Length API Semantics

The following sections describe the semantics of the applet-visible API, which is
enabled when the applet implements the javacardx.apdu.ExtendedLength
interface. These semantics are presented at the API level to the extended length
capable applet, only when the APDU received supports extended length format.
Note that the maximum length that can be supported using extended length
semantics by the Java Card technology API is 32767.

Chapter 9 API Topics 9-7

Applet.process(tAPDU) Method

When the APDU received is a Case 3E or 4E, and contains an Lc encoding of
extended length, the APDU bulffer contained in the APDU object upon entry into the
Applet.process (APDU) method shall encode the header data format as described
in ISO 7816-3 Specification in its first seven bytes, as shown in the TABLE 9-1.

When the T=0 transfer protocol is in use, a Case 3E and 4E APDU is enclosed within
an ENVELOPE (ISO Inter-industry CLA, INS=0xC2) command as described in ISO
7816-4:2005 Specification. The ENVELOPE command header is processed by the Java
Card RE and only the enclosed Case 3E or Case 4E APDU command is placed in the
APDU bulffer using the format shown in TABLE 9-1.

TABLE 9-1 APDU Buffer Format for Extended Length

offset=0 offset=1 offset=2 offset=3 offset=4 offset=5 offset=6 offset=7..

CLA INS P1 P2 3 byte Lc undefined

As shown in the table, the header data at offset 4, 5 and 6 of the APDU buffer
contains a 3-byte Lc value as defined in ISO 7816-4. The 3-byte length may encode a
number from 1to 32767.

APDU.setIncomingAndReceive() Method

This method returns the number of bytes received. The returned number may be
between 0 and 32767. Additionally, when the 3 byte Lc format is used, the data bytes
received are placed at OFFSET_EXT_CDATA (7) of the APDU buffer.

APDU.receiveBytes(short) Method

This method returns the number of bytes received. The returned number may be
between 0 and 32767.

APDU.setOutgoing() Method

These methods return the number of bytes expected (Le) by the CAD. The returned
number may be between 0 and 32767.

When the T=0 transfer protocol is in use for a Case 2E (P3=0) or Case 4 command,
this method returns 32767.

When the T=1 transfer protocol is in use for a Case 2E or Case 4E command and Le
is set to 0x0000, this method returns 32767.

9-8 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

APDU.setOutgoingLength(short) Method

This method allows the caller to specify the number of bytes to send to the CAD.
The number specified may be between 0 and 32767.

APDU.sendBytes(short, short), APDU.sendBytesLong(byte[],short,
short) Methods

These methods allow the caller to specify the number of bytes to send to the CAD.
The number specified may be between 0 and 32767.

9.5

Security and Crypto Packages

The getInstance method in the following classes returns an implementation
instance in the context of the calling applet of the requested algorithm:

javacard.security.MessageDigest
javacard.security.InitializedMessageDigest
javacard.security.Signature

javacard.security.RandomData

javacard.security.KeyAgreement

javacard.security.Checksum

javacardx.crypto.Cipher

An implementation of the Java Card RE may implement zero or more of the
algorithms listed in the Application Programming Interface, Java Card Platform, Version

2.2.2. When an algorithm that is not implemented is requested, this method shall
throw a CryptoException with reason code NO_SUCH_ALGORITHM.

Implementations of the above classes shall extend the corresponding base class and
implement all the abstract methods. All data allocation associated with the
implementation instance shall be performed at the time of instance construction to
ensure that any lack of required resources can be flagged early during the
installation of the applet.

Similarly, the buildkey method of the javacard.security.KeyBuilder class
returns an implementation instance of the requested Key type. The Java Card RE
may implement zero or more types of keys. When a key type that is not
implemented is requested, the method shall throw a CryptoException with reason
code NO_SUCH_ALGORITHM.

Chapter 9 API Topics 9-9

In the same fashion, the constructor for the javacard.security.KeyPair class
creates a KeyPair instance for the specified key type. The Java Card RE may
implement zero or more types of keys. When a key type that is not implemented is
requested, the method shall throw a CryptoException with reason code
NO_SUCH_ALGORITHM.

Implementations of key types shall implement the associated interface. All data
allocation associated with the key implementation instance shall be performed at the
time of instance construction to ensure that any lack of required resources can be
flagged early during the installation of the applet.

The MessageDigest object uses temporary storage for intermediate results when
the update () method is invoked. This intermediate state need not be preserved
across power up and reset. The object is reset to the state it was in when previously
initialized via a call to reset ().

The Signature and Cipher objects use temporary storage for intermediate results
when the update () method is invoked. This intermediate state need not be
preserved across power up and reset. The object is reset to the state it was in when
previously initialized via a call to init ().

The Checksum object uses temporary storage for intermediate results when the
update () method is invoked. This intermediate state need not be preserved across
power up and reset. The object is reset to the state it was in when previously
initialized upon a tear or card reset event.

9.6

JCSystem Class

In the Java Card platform, version 2.2.2, the getVersion method returns (short)
0x0202.

9.7

9-10

Optional Extension Packages

Some API packages in the Java Card technology are designated as extension
packages and may be optionally supported by an implementation. But, if supported,
all the classes in the package and its subpackages must be implemented by the
platform and reside on the card.

The following are optional Java Card technology extension packages:

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

javacardx.apdu - This package enables support for advanced APDU
mechanisms. This package must be implemented if and only if the platform
supports the extended length APDU protocol defined in the ISO 7816-4:2005
Specification.

javacardx.biometry - This package contains classes and interfaces which can
be used to build a biometric server application.

javacardx.crypto - This package contains functionality, which may be subject
to export controls, for implementing a security and cryptography framework.

javacardx.external - This package contains functionality, for implementing
mechanisms to access memory subsystems which are not directly addressable by
the Java Card RE on the Java Card platform.

javacardx. framework - This package contains a framework of classes and
interfaces for efficiently implementing typical Java Card technology-based
applets. If implemented, this package must include all the contained sub-
packages - util, math, and tlw.

Chapter 9 API Topics 9-11

9-12 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

CHAPTER 10

Virtual Machine Topics

This chapter details virtual machine resource failures and security violations.

10.1 Resource Failures

A lack of resources condition, such as heap space, that is recoverable shall result in a
SystemException with reason code NO_RESOURCE. The factory methods in
JCSystem used to create transient arrays throw a SystemException with reason
code NO_TRANSIENT_SPACE to indicate lack of transient space.

All other (non-recoverable) virtual machine errors, such as stack overflow, shall
result in a virtual machine error. These conditions shall cause the virtual machine to
halt. When such a non-recoverable virtual machine error occurs, an implementation
can optionally require the card to be muted or blocked from further use.

10.2 Security Violations

The Java Card RE throws a java.lang.SecurityException exception when it
detects an attempt to illegally access an object belonging to another applet across the
firewall boundary. A java.lang.SecurityException exception may optionally
be thrown by a Java Card VM implementation to indicate a violation of fundamental
language restrictions, such as attempting to invoke a private method in another
class.

For security reasons, the Java Card RE implementation may mute the card instead of
throwing the exception object.

10-1

10-2 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

CHAPTER 1 1

Applet Installation and Deletion

Applet installation and deletion on smart cards using Java Card technology is a
complex topic. The design of the Application Programming Interface, Java Card
Platform, Version 2.2.2 is intended to give Java Card RE implementers as much
freedom as possible in their implementations. However, some basic common
specifications are required to allow Java Card applets to be installed and deleted
without knowing the implementation details of a particular installer or deletion
manager.

This specification defines the concepts of an Installer and an Applet Deletion
Manager and specifies minimal requirements to achieve interoperability across a
wide range of possible Installer implementations.

The Applet Installer is an optional part of the Runtime Environment Specification, Java
Card Platform, Version 2.2.2. An implementation of the Java Card RE does not
necessarily need to include a post-issuance Installer. However, if implemented, the
installer is required to support the behavior specified in this chapter.

If the implementation of the Java Card RE includes a post-issuance Installer, an
Applet Deletion Manager that supports the behavior specified in this chapter is also
required.

Section 11.1, “The Installer” on page 11-2 describes CAP file loading and linking. For
more information on CAP files, see the Virtual Machine Specification, Java Card
Platform, Version 2.2.2. Section 11.2, “The Newly Installed Applet” on page 11-5
describes applet installation. Even though the loading and linking operations are
described together with the installation operations, there is no requirement that they
be performed together during the same card session for the following reasons:

m Applet packages in ROM are preloaded and prelinked at card issuance, but
instances of applets from these packages may be installed by the Installer during
a card session.

m Applet packages may be downloaded and linked by the Installer during one card
session, but applet instances from these packages may be installed by the Installer
during a different card session.

m Library packages may be preloaded in ROM or downloaded and linked by the
Installer during a card session. There are no applets to install within a library
package.

11.1

11.1.1

The Installer

The mechanisms necessary to install an applet on smart cards using Java Card
technology are embodied in an on-card component called the Installer.

To the CAD the Installer appears to be an applet. It has an AID, and it becomes the
currently selected applet when this AID is successfully processed by a SELECT FILE
command. Once selected on a logical channel, the Installer behaves in much the
same way as any other applet, as follows:

m [t receives all APDUs dispatched to this logical channel just like any other active
applet.

m Its design specification prescribes the various kinds and formats of APDUs that it
expects to receive along with the semantics of those commands under various
preconditions.

m It processes and responds to all APDUs that it receives. Response to incorrect
APDUs include an error condition of some kind.

m When another applet is selected on this logical channel (or when the card is reset
or when power is removed from the card), the Installer becomes deselected and
remains suspended until the next time that it is selected.

Installer Implementation

The Installer need not be implemented as an applet on the card. The requirement is
only that the Installer functionality be SELECTable. The corollary to this requirement
is that Installer component shall not be able to be invoked on a logical channel on
which a non-Installer applet is an active applet instance nor when no applet is
active.

Obviously, a Java Card RE implementer could choose to implement the Installer as
an applet. If so, then the Installer might be coded to extend the Applet class and
respond to invocations of the select, process, and deselect methods; and, if
necessary, the methods of the javacard. framework.MultiSelectable interface.

But a Java Card RE implementer could also implement the Installer in other ways, as
long as it provides the SELECTable behavior to the outside world. In this case, the
Java Card RE implementer has the freedom to provide some other mechanism by
which APDUs are delivered to the Installer code module.

11-2 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

11.1.2

11.1.3

11.1.4

Installer AID

Because the Installer is SELECTable, it shall have an AID. Java Card RE
implementers are free to choose their own AIDs by which their Installer is selected.
Multiple installers may be implemented.

Installer APDUs

The Java Card specification does not specify any APDUs for the Installer. Java Card
RE implementers are free to choose their own APDU commands to direct their
Installer in its work.

The model is that the Installer on the card is initiated by an installation program
running on the CAD. For installation to succeed, this CAD installation program shall
be able to do the following:

m Recognize the card.
m SELECT FILE the Installer on the card.

m Coordinate the installation process by sending the appropriate APDUs to the card
Installer. These APDUs will include the following:

» Authentication information, to ensure that the installation is authorized.

n The applet code to be loaded into the card’s memory.

» Linkage information to link the applet code with code already on the card.

» Instance initialization parameter data to be sent to the applet’s install
method.

The Application Programming Interface, Java Card Platform, Version 2.2.2 does not
specify the details of the CAD installation program nor the APDUs passed between
it and the Installer.

CAP File Versions

The Installer shall support the following CAP file versions:
m Version 2.1 as specified in the Java Card 2.1.1 Virtual Machine Specification.

m Version 2.2 as specified in the Virtual Machine Specification, Java Card Platform,
Version 2.2.2.

Chapter 11 Applet Installation and Deletion 11-3

11.1.5

11-4

Installer Behavior

Java Card RE implementers shall also define other behaviors of their Installer,
including the following;:

Whether or not installation can be aborted and how this is done
What happens if an exception, reset, or power fail occurs during installation

What happens if another applet is selected before the Installer is finished with its
work

The Java Card RE shall guarantee that an applet will not be deemed successfully
installed in the following cases:

The applet package as identified by the package AID is already resident on the
card.

The applet package contains an applet with the same Java Card platform name as
that of another applet already resident on the card. The Java Card platform name
of an applet identified by the AID item is described in Section 6.5 of the Virtual
Machine Specification, Java Card Platform, Version 2.2.2.

The applet package requires more memory than is available on the card.
The applet package references a package that is not resident on the card.

The applet package references another package already resident on the card, but
the version of the resident package is not binary compatible with the applet
package. For more information on binary compatibility in the Java programming
language, see Java Language Specification. Binary compatibility in Java Card
technology is discussed in the Virtual Machine Specification, Java Card Platform,
Version 2.2.2.

A class in the applet package is found to contain more package visible virtual
methods or instance fields than the limitations enumerated in Section 2.2.4.3 of
the Virtual Machine Specification, Java Card Platform, Version 2.2.2.

A reset or power fail occurs while executing the applet’s install method and
before successful return from the Applet.register method (see Section 3.1,
“install Method” on page 3-1).

The applet’s install method throws an exception before successful return from
the Applet.register method (see Section 3.1, “install Method” on page 3-1).

When applet installation is unsuccessful, the Java Card RE shall guarantee that
objects created during the execution of the install method, or by the Java Card RE
on its behalf (initialized static arrays) can never be accessed by any applet on the
card. In particular, any reference in CLEAR_ON_RESET transient space to an object
created during an unsuccessful applet installation must be reset as a null reference.

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

11.1.6

Installer Privileges

Although an Installer may be implemented as an applet, an Installer typically
requires access to features that are not available to other applets. For example,
depending on the Java Card RE implementer’s implementation, the Installer will
need to do the following tasks:

m Read and write directly to memory, bypassing the object system and/or standard
security.

m Access objects owned by other applets or by the Java Card RE.

m Invoke non-entry point methods of the Java Card RE.

m Be able to invoke the install method of a newly installed applet.

Again, it is up to each Java Card RE implementer to determine the Installer
implementation and supply such features in their Java Card RE implementations as

necessary to support their Installer. Java Card RE implementers are also responsible
for the security of such features, so that they are not available to normal applets.

11.2

The Newly Installed Applet

A single interface exists between the Installer and the applet that is being installed.
After the Installer correctly prepares the applet for execution (performed steps such
as loading and linking), the Installer shall invoke the applet’s install method. This
method is defined in the Applet class.

The precise mechanism by which an applet’s install (byte[], short, byte)
method is invoked from the Installer is a Java Card RE implementer-defined
implementation detail. However, there shall be a context switch so that any context-
related operations performed by the install method (such as creating new objects)
are done in the context of the new applet and not in the context of the Installer. The
Installer shall also ensure that array objects created in the class initialization
(<clinit>) methods of the applet package are also owned by the context of the new
applet.

The Installer shall not invoke the install (byte[], short, byte) method of an
applet if another applet from the same package is active on the card. The applet
instantiation shall be deemed unsuccessful.

The Installer shall ensure that during the execution of the install () method, the
new applet (not the Installer) is the currently selected applet. In addition, any
CLEAR_ON_DESELECT objects created during the install () method shall be
associated with the selection context of the new applet.

Chapter 11 Applet Installation and Deletion 11-5

The installation of an applet is deemed complete if all steps are completed without
failure or an exception being thrown, up to and including successful return from
executing the Applet.register method. At that point, the installed applet is
selectable.

The maximum size of the parameter data is 127 bytes. The bArray parameter is a
global array (install (byte[] bArray, short bOffset, byte bLength)),
and for security reasons is zeroed after the return from the install method, just as
the APDU bulffer is zeroed on return from an applet’s process method.

11.2.1 Installation Parameters

The format of the input data passed to the target applet’s install method in the
bArray parameter is as follows:

bArray[offset] = length(Li) of instance AID
bArray[offset+l..offset+Li] = instance AID bytes (5-16 bytes)

bArray[offset+Li+1]= length(Lc) of control info

bArray[offset+Li+2..o0ffset+Li+Lc+1l] = control info
bArray[offset+Li+Lc+2] = length(La) of applet data
bArray[offset+Li+Lc+3..0ffset+Li+Le+La+2] = applet data

Any of the length items: Li, Lc, La may be zero. If length L1 is non-zero, the
instance AID bytes item is the proposed AID of the applet instance.

The control info item of the parameter data is implementation dependent and is
specified by the Installer.

Other than the need for the entire parameter data to not be greater than 127 bytes,
the Java Card API does not specify anything about the contents of the applet data
item of the global byte array installation parameter. This is fully defined by the
applet designer and can be in any format desired. In addition, the applet data
portion is intended to be opaque to the Installer.

Java Card RE implementers should design their Installers so that it is possible for an
installation program running in a CAD to specify the applet data delivered to the
Installer. The Installer simply forwards this along with the other items in the format
defined above to the target applet’s install method in the bArray parameter. A
typical implementation might define a Java Card RE implementer-proprietary
APDU command that has the semantics “call the applet’s install method passing
the contents of the accompanying applet data.”

11-6 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

11.3

11.3.1

The Applet Deletion Manager

The mechanisms necessary to delete an applet on smart cards using Java Card
technology are embodied in an on-card component called the Applet Deletion
Manager.

To the CAD, the Applet Deletion Manager appears to be an applet, and may be one
and the same as the Applet Installer. It has an AID, and it becomes the currently
selected applet instance when this AID is successfully processed by a SELECT FILE
command. Once selected on a logical channel, the Applet Deletion Manager behaves
in much the same way as any other applet, as follows:

m [t receives all APDUs dispatched to this logical channel, just like any other active
applet.

m [ts design specification prescribes the various kinds and formats of APDUs that it
expects to receive, along with the semantics of those commands under various
preconditions.

m It processes and responds to all APDUs that it receives. Response to incorrect
APDUs include an error condition of some kind.

m When another applet is selected on this logical channel (or when the card is reset
or when power is removed from the card), the Applet Deletion Manager becomes
deselected and remains suspended until the next time it is selected.

Applet Deletion Manager Implementation

The Applet Deletion Manager need not be implemented as an applet on the card.
The requirement is only that the Applet Deletion Manager functionality be
SELECTable. The corollary to this requirement is that Applet Deletion Manager
component shall not be able to be invoked on a logical channel where a non-Applet
Deletion Manager applet is an active applet instance, nor when no applet is active.

A Java Card RE implementer could choose to implement the Applet Deletion
Manager as an applet. If so, the Applet Deletion Manager might be coded to extend
the Applet class and to respond to invocations of the select, process, and
deselect methods, and, if necessary, the methods of the

javacard. framework.MultiSelectable interface.

However, a Java Card RE implementer could also implement the Applet Deletion
Manager in other ways, as long as it provides the SELECTable behavior to the
outside world. In this case, the Java Card RE implementer has the freedom to
provide some other mechanism by which APDUs are delivered to the Applet
Deletion Manager code module.

Chapter 11 Applet Installation and Deletion 11-7

11.3.2 Applet Deletion Manager AID

Because the Applet Deletion Manager is SELECTable, it shall have an AID which
may be the same as that of the Applet Installer. Java Card RE implementers are free
to choose their own AIDs by which their Applet Deletion Manager is selected.
Multiple Applet Deletion Managers may be implemented.

11.3.3 Applet Deletion Manager APDUs

The Java Card API does not specify any APDUs for the Applet Deletion Manager.
Java Card RE implementers are entirely free to choose their own APDU commands
to direct their Applet Deletion Manager in its work.

The model is that the Applet Deletion Manager on the card is initiated by an applet
deletion program running on the CAD. In order for applet deletion to succeed, this
CAD applet deletion program shall be able to do the following:

m Recognize the card.
m SELECT FILE the Applet Deletion Manager on the card.

m Coordinate the applet deletion process by sending the appropriate APDUs to the
card Applet Deletion Manager. These APDUs include the following;:

» Authentication information, to ensure that the applet deletion is authorized.
n Identify the applet(s) code or instance to be deleted from the card’s memory.

The Application Programming Interface, Java Card Platform, Version 2.2.2 does not
specify the details of the CAD applet deletion program nor the APDUs passed
between it and the Applet Deletion Manager.

11.3.4 Applet Deletion Manager Behavior

Java Card RE implementers shall also define other behaviors of their Applet
Deletion Manager, including the following;:

m Whether or not applet deletion can be aborted and how this is done

m What happens if an exception, reset, or power fail occurs during applet deletion

m What happens if another applet is selected before the Applet Deletion Manager is
finished with its work

The following three categories of applet deletion are required on the card:

m Applet instance deletion involves the removal of the applet object instance and
the objects owned by the applet instance and associated Java Card RE structures.

11-8 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

11.3.4.1

m Applet/library package deletion involves the removal of all the card resident
components of the CAP file, including code and any associated Java Card RE
management structures.

m Deletion of the applet package and the contained applet instances involves the
removal of the card-resident code and Java Card RE structures associated with
the applet package, and all the applet instances and objects in the context of the
package and associated Java Card RE structures.

Invocation of the Method
javacard. framework.AppletEvent.uninstall

Whenever one or more applet instances is being deleted, the Applet Deletion
Manager shall inform each of the applets of potential deletion by invoking, if
implemented, the applet's uninstall method. When multiple applet instances are
being deleted, the order of invocation of the uninstall methods is unspecified. Prior
to following the stepwise sequence described in Section 11.3.4.1, “Applet Instance
Deletion” on page 11-9, Section 11.3.4.2, “Applet/Library Package Deletion” on
page 11-11, or Section 11.3.4.3, “Applet Package and Contained Instances Deletion”
on page 11-12, the Java Card RE shall do the following;:

m Perform any security and authorization checks required for the deletion of each of
the applet instances to be deleted. If the checks fail, an error is returned and the
applet deletion fails.

m Otherwise, check if an applet instance belonging to the contexts of the applet
instances being deleted, is active on the card. If so, an error is returned and the
applet instance deletion fails.

m Otherwise, perform the following steps for each of the applet instances to be
deleted:

If the applet instance being deleted implements the AppletEvent interface, set
the currently selected applet to that of the applet instance and invoke the
uninstall method of the applet instance.

= A context switch into the context of the applet instance occurs upon invocation.
» If an uncaught exception is thrown during the execution of the uninstall
method, it is caught and ignored.

Applet Instance Deletion

The Java Card RE shall guarantee that applet instance deletion is not attempted and
thereby deemed unsuccessful in the following cases:

m An object owned by the applet instance is referenced from an object owned by
another applet instance on the card.

Chapter 11 Applet Installation and Deletion 11-9

m An object owned by the applet instance is referenced from a static field on any
package on the card.

m An applet instance belonging to the context of the applet instance being deleted,
is active on the card.

Otherwise, the Java Card RE shall delete the applet instance.

Note — The applet deletion attempt may fail due to security considerations or
resource limitations.

The applet instance deletion operation must be atomic. If a reset or power fail occurs
during the deletion process, it must result in either an unsuccessful applet instance
deletion or a successfully completed applet instance deletion before any applet is
selected on the card.

Following an unsuccessful applet instance deletion, the applet instance shall be
selectable, and all objects owned by the applet shall remain unchanged. The
functionality of all applet instances on the card remains the same as prior to the
unsuccessful attempt.

Following a successful applet instance deletion, it shall not be possible to select that
applet, and no object owned by the applet can be accessed by any applet currently
on the card or by a new applet created in the future.

The resources used by the applet instance may be recovered for reuse.

The AID of the deleted applet instance may be reassigned to a new applet instance.

Multiple Applet Instance Deletion
The Java Card RE shall guarantee that multiple applet instance deletion is not
attempted, and thereby deemed unsuccessful in the following cases:

m An object owned by any of the applet instances being deleted is referenced from
an object owned by an applet instance on the card which is not being deleted.

m An object owned by any of the applet instances being deleted is referenced from a
static field on a package on the card.

m An applet instance belonging to the contexts of any of the applet instances being
deleted is active on the card.

Otherwise, the Java Card RE shall delete the applet instances.

Note — The applet deletion attempt may fail due to security considerations or
resource limitations.

11-10 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

11.3.4.2

The multiple applet instance deletion operation must be atomic. If a reset or power
fail occurs during the deletion process, it must result in either an unsuccessful
multiple applet instance deletion or a successfully completed multiple applet
instance deletion before any applet is selected on the card.

Following an unsuccessful multiple applet instance deletion, all applet instances
shall be selectable, and all objects owned by the applets shall remain unchanged. The
functionality of all applet instances on the card remains the same as prior to the
unsuccessful attempt.

Following a successful multiple applet instance deletion, it shall not be possible to
select any of the deleted applets, and no object owned by the deleted applets can be
accessed by any applet currently on the card or by a new applet created in the
future.

The resources used by the applet instances may be recovered for reuse.

The AID of the deleted applet instances may be reassigned to new applet instances.

Applet/Library Package Deletion
The Java Card RE shall guarantee that applet/library package deletion is not
attempted and thereby deemed unsuccessful in the following cases:

m A reachable (non-garbage) instance of a class belonging to the package being
deleted exists on the card.

m Another package on the card depends on this package (as expressed in the CAP
file’s import component).

Otherwise, if the applet/library package is resident in mutable memory, the Java
Card RE shall delete the applet/library package.

Note — The package deletion attempt may fail due to security considerations or
resource limitations.

The applet/library package deletion operation must be atomic. If a reset or power
fail occurs during the deletion process, it must result in either an unsuccessful
applet/library package deletion or a successfully completed applet/library package
deletion before any applet is selected on the card.

Following an unsuccessful applet/library package deletion, any object or package
that depends on the package continues to function unaffected. The functionality of
all applets on the card remains the same as prior to the unsuccessful attempt.

Chapter 11 Applet Installation and Deletion 11-11

11.3.4.3

Following a successful applet/library package deletion, it shall not be possible to
install another package which depends on the deleted package. Additionally, it shall
be possible to reinstall the same package (with exactly the same package AID) or an
upgraded version of the deleted package onto the card.

The resources used by the applet/library package may be recovered for reuse.

Applet Package and Contained Instances Deletion

The Java Card RE shall guarantee that deletion of the applet package and contained
instances is not attempted and thereby deemed unsuccessful in the following cases:

m Another package on the card depends on this package (as expressed in the CAP
file’s import component).

m An object owned by any of the applet instances being deleted is referenced from
an object owned by an applet instance on the card that is not being deleted.

m An object owned by any of the applet instances being deleted is referenced from a
static field of a package that is not being deleted.

m An applet instance belonging to the contexts of any of the applet instances being
deleted, is active on the card.

Otherwise, if the applet package is resident in mutable memory, the Java Card RE
shall delete the applet package and contained instances.

Note — The applet and package deletion attempt may fail due to security
considerations or resource limitations.

The deletion of applet package and contained instances operation must be atomic. If
a reset or power fail occurs during the deletion process, it must result in either an
unsuccessful deletion of the applet package and contained instances or a
successfully completed deletion of the applet package and contained instances
before any applet is selected on the card.

Following an unsuccessful deletion of the applet package and contained instances,
any object or package that depends on the package continues to function unaffected.
The functionality of all applets on the card remains the same as prior to the
unsuccessful attempt.

Following a successful deletion of the applet package and contained instances, it
shall not be possible to install another package that depends on the deleted package.
Additionally, it shall be possible to reinstall the same package (with exactly the same
package AID) or an upgraded version of the deleted package onto the card.

The resources used by the applet package may be recovered for reuse.

11-12 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

11.3.5

Following a successful deletion of the applet package and contained instances, it
shall not be possible to select any of the deleted applets, and no object owned by the
deleted applets can be accessed by any applet currently on the card or by a new
applet created in the future.

The resources used by the applet instances may be recovered for reuse.

The AID for the deleted applet instances may be reassigned to new applet instances.

Applet Deletion Manager Privileges

Although an Applet Deletion Manager may be implemented as an applet, an Applet
Deletion Manager typically requires access to features that are not available to other
applets. For example, depending on the Java Card RE implementer’s
implementation, the Applet Deletion Manager needs to do the following:

m Read and write directly to memory, bypassing the object system and/or standard
security.
m Access objects owned by other applets or by the Java Card RE.

m Invoke non-entry point methods of the Java Card RE.

Again, it is up to each Java Card RE implementer to determine the Applet Deletion
Manager implementation and supply such features in their Java Card RE
implementations as necessary to support their Applet Deletion Manager. Java Card
RE implementers are also responsible for the security of such features, so that they
are not available to normal applets.

Chapter 11 Applet Installation and Deletion 11-13

11-14 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

CHAPTER 12

API Constants

Some of the API classes do not have values specified for their constants in
Application Programming Interface, Java Card Platform, Version 2.2.2. If constant values
are not specified consistently by implementers of this Runtime Environment
Specification, Java Card Platform, Version 2.2.2, industry-wide interoperability is
impossible. This chapter provides the required values for constants that are not
specified in the Application Programming Interface, Java Card Platform, Version 2.2.2.

12.1

Class javacard. framework .APDU

public static
public static
public static
public static
public static

public static
(byte) 0x80;

public static
(byte) 0x90;

public static
public static
public static
public static
public static
public static
public static
public static

public static

final
final
final
final
final

final

final

final
final
final
final
final
final
final
final

final

byte
byte
byte
byte
byte
byte

byte

byte
byte
byte
byte
byte
byte
byte
byte
byte

PROTOCOL_TYPE_MASK = (byte)0x0F;
PROTOCOL_TO = 0;

PROTOCOL_T1 = 1;

PROTOCOL_MEDIA_MASK = (byte)0xF0;
PROTOCOL_MEDIA_DEFAULT = (byte)0x00;
PROTOCOL_MEDIA_CONTACTLESS_TYPE_A =

PROTOCOL_MEDIA_CONTACTLESS_TYPE_B

PROTOCOL_MEDIA_USB = (byte)0xA0;
STATE_INITIAL = 0;

STATE_PARTIAL_INCOMING = 1;
STATE_FULL_INCOMING = 2;

STATE_OUTGOING = 3;
STATE_OUTGOING_LENGTH_KNOWN = 4;
STATE_PARTIAL_OUTGOING = 5;
STATE_FULL_OUTGOING = 6;
STATE_ERROR_NO_TO_GETRESPONSE = (byte)-1;

12-1

_4;

public static final byte STATE_ERROR_T1_IFD_ABORT = (byte)-2;
public static final byte STATE_ERROR_IO = (byte) -3;
public static final byte STATE_ERROR_NO_TO_REISSUE = (byte)

12.2

12.3

12-2

Class javacard. framework .APDUException

public static

public
public
public
public
public
public

static
static
static
static
static

static

final
final
final
final
final
final

final

short ILLEGAL_USE = 1;

short BUFFER_BOUNDS = 2;

short BAD_LENGTH = 3;

short IO_ERROR = 4;

short NO_TO_GETRESPONSE = OxAA;
short T1_TIFD_ABORT = O0xAB;
short NO_TO0_REISSUE = OxAC;

Interface javacard. framework.IS07816

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final

final

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

static

short (short) 0x9000;

SW_BYTES_REMAINING_00 0x6100;

SW_NO_ERROR

short

short SW_WARNING_STATE_UNCHANGED

0x6700;

short SW_WRONG_LENGTH

short SW_LOGICAL_CHANNEL_NOT_ SUPPORTED

short SW_SECURE_MESSAGING_NOT_SUPPORTED

short SW_LAST_ COMMAND_EXPECTED
short SW_COMMAND_CHAINING_NOT_SUPPORTED
short SW_SECURITY_ STATUS_NOT_ SATISFIED
0x6983;

0x6984;

SW_CONDITIONS_NOT SATISFIED
0x6986;

0x6999;

short SW_FILE_INVALID

short SW_DATA_INVALID

short

short SW_COMMAND_NOT_ ALLOWED

short SW_APPLET_SELECT_FAILED
0x6A80;
SW_FUNC_NOT_SUPPORTED 0x6A81;
0x6A82;

0x6A83;

short SW_WRONG_DATA

short

short SW_FILE_NOT_FOUND

short SW_RECORD_NOT_FOUND

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

0x6883;

i

0x6200;

0x6881;
0x6882;

0x6884;
0x6982;

0x6985;

public final static short SW_INCORRECT_P1P2 = 0x6A86;
public final static short SW_WRONG_P1P2 = 0x6B00;
public final static short SW_CORRECT_LENGTH_00 = 0x6C00;
public final static short SW_INS_NOT_ SUPPORTED = 0x6D0O0;
public final static short SW_CLA_NOT_SUPPORTED = 0x6EQ00;
public final static short SW_UNKNOWN = O0x6F00;

public static final short SW_FILE_FULL = 0x6A84;

public final static byte OFFSET_CLA = 0;

public final static byte OFFSET_INS

Il
[

public final static byte OFFSET_Pl = 2;

public final static byte OFFSET P2 = 3;

public final static byte OFFSET_LC = 4;

public final static byte OFFSET_CDATA = 5;
public final static byte OFFSET_EXT CDATA = 7;
public final static byte CLA_IS07816 = 0x00;

public final static byte INS_SELECT = (byte) 0xA4;
public final static byte INS_EXTERNAL_ AUTHENTICATE = (byte) 0x82;
12.4 Class javacard. framework.JCSystem

public static final byte NOT_A_TRANSIENT_OBJECT = 0;

public static final byte CLEAR_ON_RESET = 1;

public static final byte CLEAR_ON_DESELECT = 2;

public static final byte MEMORY_TYPE PERSISTENT = 0;

public static final byte MEMORY_TYPE_TRANSIENT_ RESET = 1;
public static final byte MEMORY_TYPE_TRANSIENT_DESELECT = 2;

12.5 Class javacard. framework.PINException
public static final short ILLEGAL_VALUE = 1;

Chapter 12 API Constants 12-3

12.6 Class
javacard. framework.SystemException
public static final short ILLEGAL_VALUE = 1;
public static final short NO_TRANSIENT_SPACE = 2;
public static final short ILLEGAL_TRANSIENT = 3;
public static final short ILLEGAL_AID = 4;
5;
6;

public static final short NO_RESOURCE

public static final short ILLEGAL_USE

12.7 Class
javacard. framework.TransactionExceptio
n
public static final short IN_PROGRESS = 1;
public static final short NOT_IN_PROGRESS = 2;
public static final short BUFFER_FULL = 3;
public static final short INTERNAL_FAILURE = 4;

12.8 Class
javacard. framework.service.Dispatcher
public static final byte PROCESS_NONE = (byte)0;
public static final byte PROCESS_INPUT_DATA = (byte)l;
public static final byte PROCESS_COMMAND= (byte)2;
public static final byte PROCESS_OUTPUT_DATA = (byte)3;

12.9 Class
javacard. framework.service.RMIService
public static final byte DEFAULT_ RMI_INVOKE_INSTRUCTION = 0x38;

12-4 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

12.10 Class

javacard. framework.service.ServiceExce
ption

public static final short ILLEGAL_PARAM = 1;

public static final short DISPATCH_TABLE_FULL = 2;

public static final short COMMAND_DATA_TOO_LONG = 3;

public static final short CANNOT_ACCESS_IN_COMMAND = 4 ;

public static final short CANNOT_ ACCESS_OUT _COMMAND = 5;

public static final short COMMAND_IS_FINISHED = 6;

public static final short REMOTE_OBJECT_NOT_ EXPORTED = 7;

12.11 Class javacard.security.Checksum
public static final byte ALG_IS03309_CRCl6 = 1;
public static final byte ALG_IS03309_CRC32 = 2;

12.12 Class javacard.security.CryptoException
public static final short ILLEGAL_VALUE = 1;
public static final short UNINITIALIZED_KEY = 2;
public static final short NO_SUCH_ALGORITHM = 3;
public static final short INVALID_ INIT = 4;
public static final short ILLEGAL_USE = 5;

12.13 Class javacard.security.KeyAgreement
public static final byte ALG_EC_SVDP_DH = 1;
public static final byte ALG_EC_SVDP_DHC = 2;

Chapter 12 API Constants 12-5

12.14

12-6

Class javacard.security.KeyBuilder

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

static

final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final

final

byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
byte
short
short
short
short
short
short
short
short
short
short
short
short

TYPE_DES_TRANSIENT_RESET

TYPE_DES_TRANSIENT_ DESELECT

TYPE _DES = 3;
TYPE_RSA_PUBLIC =
TYPE_RSA_PRIVATE

4;
5;

TYPE_RSA_CRT_PRIVATE = 6;

TYPE_DSA_PUBLIC = 7;

TYPE_DSA_PRIVATE = 8;

TYPE_EC_F2M_PUBLIC

TYPE_EC_F2M_PRIVATE =

TYPE_EC_FP_PUBLIC
TYPE_EC_FP_PRIVAT

E

= 9;

10;

= 11;
= 12;

TYPE_AES_TRANSIENT_RESET

TYPE_AES_TRANSIENT_ DESELECT

TYPE _AES = 15;

TYPE_KOREAN_SEED_TRANSIENT RESET
TYPE_KOREAN_SEED_TRANSIENT DESELECT

TYPE_KOREAN_SEED

TYPE_HMAC_TRANSIENT_ RESET
TYPE_HMAC_TRANSIENT_ DESELECT

21;
64 ;
LENGTH_DES3_ 2KEY

TYPE_HMAC =
LENGTH_DES =

LENGTH_DES3_3KEY
LENGTH_RSA_512 =
LENGTH_RSA_736 =
LENGTH_RSA_768 =
LENGTH_RSA_896 =
LENGTH_RSA_1024
LENGTH_RSA_1280
LENGTH_RSA_1536
LENGTH_RSA_1984
LENGTH_RSA_2048

18;

= 128;
= 192;
512;
736;
768;
896;
1024;
1280;
1536;
1984;
2048;

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

12.15

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

static

final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final
final

final

short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short
short

LENGTH_DSA_512 = 512;
LENGTH_DSA_768 = 768;
LENGTH_DSA_1024 = 1024;
LENGTH_EC_FP_112 = 112;
LENGTH_EC_F2M_113 = 113;
LENGTH_EC_FP_128 = 128;
LENGTH_EC_F2M_131 = 131;
LENGTH_EC_FP_160 = 160;
LENGTH_EC_F2M_163 = 163;
LENGTH_EC_FP_192 = 192;
LENGTH_EC_F2M_193 = 193;

LENGTH_AES_128= 128;
LENGTH_AES_192= 192;
LENGTH_AES_256= 256;
LENGTH_KOREAN_SEED_128= 128;
LENGTH_HMAC_SHA_1_BLOCK_64= 64;
LENGTH_HMAC_SHA_256_BLOCK_64= 64;
LENGTH_HMAC_SHA_384_BLOCK_64= 128;
LENGTH_HMAC_SHA_512_BLOCK_64= 128;

Class javacard.security.KeyPair

public
public
public
public
public

12.16

static
static
static
static

static

final
final
final
final

final

byte
byte
byte
byte
byte

ALG_RSA = 1;
ALG_RSA_CRT = 2;
ALG_DSA = 3;
ALG_EC_F2M = 4;
ALG_EC_FP = 5;

Class javacard.security.MessageDigest

public
public
public
public

static
static
static

static

final
final
final

final

byte
byte
byte
byte

ALG_SHA = 1;
ALG_MD5 = 2;
ALG_RIPEMD160 = 3;
ALG_SHA_256 = 4;

Chapter 12 API Constants 12-7

public static final byte ALG_SHA_ 384 = 5;

public static final byte ALG_SHA_512 = 6;

public static final byte LENGTH_SHA = (byte) 20;

public static final byte LENGTH_MD5 = (byte) 16;

public static final byte LENGTH_RIPEMD160 = (byte) 20;

public static final byte LENGTH_SHA_ 256 = (byte) 32;

public static final byte LENGTH_SHA_384 = (byte) 48;

public static final byte LENGTH_SHA 512 = (byte) 64;
12.17 Class javacard.security.RandomData

public static final byte ALG_PSEUDO_RANDOM = 1;
public static final byte ALG_SECURE_RANDOM = 2;

12.18 Class javacard.security.Signature
public static final byte ALG_DES_MAC4_NOPAD = 1;

public static final byte ALG_DES_MACS8_NOPAD 2;

public static final byte ALG_DES_MAC4_IS09797_M1

public static final byte ALG_DES_MAC8_IS09797_M1

public static final byte ALG_DES_MAC4_IS09797_M2

1
oA U1 W

public static final byte ALG_DES_MACS8_IS09797_M2

public static final byte ALG_DES_MAC4_PKCS5 = 7;
public static final byte ALG_DES_MACS8_PKCS5

1l
o]

public static final byte ALG_RSA_SHA_IS09796 = 9;

public static final byte ALG_RSA_SHA PKCS1 = 10;

public static final byte ALG_RSA_MD5_PKCS1 = 11;

public static final byte ALG_RSA_RIPEMD160_IS09796 = 12;
public static final byte ALG_RSA_RIPEMD160_PKCS1 = 13;
public static final byte ALG_DSA_SHA = 14;

public static final byte ALG_RSA_SHA_RFC2409 = 15;
public static final byte ALG_RSA_MD5_RFC2409 = 16;
public static final byte ALG_ECDSA_SHA = 17;

public static final byte ALG_AES_MAC_128_NOPAD = 18;

12-8 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

public static final byte ALG_DES_MAC4_IS09797_1_M2_ALG3 = 19;
public static final byte ALG_DES_MACS8_IS09797_1_M2_ALG3 = 20;
public static final byte ALG_RSA_SHA_PKCS1_PSS = 21;

public static final byte ALG_RSA_MD5_PKCS1_PSS = 22;

public static final byte ALG_RSA_RIPEMD160_PKCS1_PSS = 23;
public static final byte ALG_HMAC_SHAl = 24;

public static final byte ALG_HMAC_SHA_256 = 25;

public static final byte ALG_HMAC_SHA_ 384 = 26;

public static final byte ALG_HMAC_SHA_512 = 27;

public static final byte ALG_HMAC_MD5 = 28;

public static final byte ALG_HMAC_RIPEMD160 = 29;

public static final byte ALG_RSA_SHA IS09796_MR = 30;

public static final byte ALG_RSA_RIPEMD160_IS09796_MR = 31;
public static final byte ALG_SEED_MAC_NOPAD = 32;

public static final byte MODE_SIGN = 1;

public static final byte MODE_VERIFY = 2;

12.19 Class javacardx.biometry.BioBuilder

public static final byte FACIAL_FEATURE= (byte)l;
public static final byte VOICE_PRINT = (byte)2;
public static final byte FINGERPRINT = (byte)3;
public static final byte IRIS_SCAN= (byte)4;
public static final byte RETINA_SCAN = (byte)5;
public static final byte HAND_GEOMETRY = (byte)6;
public static final byte SIGNATURE = (byte)7;
public static final byte KEYSTROKES = (byte)S8;
public static final byte LIP_MOVEMENT = (byte)9;
public static final byte THERMAL_FACE = (byte)l10;
public static final byte THERMAL_HAND = (byte)ll;
public static final byte GAIT _STYLE = (byte)l2;
public static final byte BODY_ODOR = (byte)l1l3;
public static final byte DNA_SCAN = (byte)l4;
public static final byte EAR_GEOMETRY = (byte)l5;
public static final byte FINGER_GEOMETRY = (byte)l6;

Chapter 12 APl Constants

public static final byte PALM_GEOMETRY = (byte)l7;

public static final byte VEIN_PATTERN = (byte)l8;
public static final byte PASSWORD = (byte)31;
public static final byte DEFAULT_INITPARAM = (byte)O0;

12.20 Class javacardx.biometry.BioException
public static final short ILLEGAL_VALUE = (short)l;
public static final short INVALID_DATA = (short)2;
public static final short NO_SUCH_BIO_TEMPLATE = (short)3;
public static final short NO_TEMPLATES_ENROLLED = (short)4;
public static final short ILLEGAL_USE = (short)5;

12.21 Class javacardx.biometry.BioTemplate

public static final short MINIMUM_SUCCESSFUL_MATCH_SCORE =
(short)16384;

public static final short MATCH_NEEDS_MORE_DATA = (short)-1;

12.22 Class javacardx.crypto.Cipher
public static final byte ALG_DES_CBC_NOPAD = 1;
public static final byte ALG_DES_CBC_IS09797_M1 = 2;
public static final byte ALG_DES_CBC_IS09797_M2 = 3;
public static final byte ALG_DES_CBC_PKCS5 = 4;
public static final byte ALG_DES_ECB_NOPAD = 5;
public static final byte ALG_DES_ECB_IS09797_M1 = 6;
public static final byte ALG_DES_ECB_IS09797_M2 = 7;
public static final byte ALG_DES_ECB_PKCS5 = 8;
public static final byte ALG_RSA_I1S014888 = 9;
public static final byte ALG_RSA_PKCS1 = 10;
public static final byte ALG_RSA_IS09796 = 11;
public static final byte ALG_RSA_NOPAD = 12;
public static final byte ALG_AES_BLOCK_128_CBC_NOPAD = 13;

12-10 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

public static
public static
public static
public static
public static

public static

12.23 Class

javacardx.external .ExternalExeption

final
final
final
final
final

final

byte
byte
byte
byte
byte
byte

ALG_AES_BLOCK_128_ECB_NOPAD = 14;
ALG_RSA_PKCS1_OAEP = 15;
ALG_KOREAN_SEED_ECB_NOPAD = 16;
ALG_KOREAN_SEED_CBC_NOPAD = 17;
MODE_DECRYPT = 1;

2;

MODE_ENCRYPT

public static final short NO_SUCH_SUBSYSTEM = 1;

public static final short INVALID_PARAM = 2;

public static final short INTERNAL_ERROR = 3;

12.24 Class javacardx.external .Memory
public static final short MEMORY_TYPE_MIFARE = (short) 1;
public static final short MEMORY_TYPE_EXTENDED_STORE = (short) 2;

12.25 Class
javacardx. framework.math.BigNumber
public static final byte FORMAT BCD = (byte)l;
public static final byte FORMAT_HEX = (byte)2;

12.26 Class javacardx. framework. tlv.BERTag
public static final byte BER_TAG_CLASS_UNIVERSAL = (byte)0;
public static final byte BER_TAG_CLASS_APPLICATION = (byte)l;
public static final byte BER_TAG_CLASS_CONTEXT_ SPECIFIC = (byte)2;
public static final byte BER_TAG_CLASS_PRIVATE = (byte)3;
public static final boolean BER_TAG_TYPE_CONSTRUCTED = true;
public static final boolean BER_TAG_TYPE_PRIMITIVE = false;

Chapter 12 API Constants

12-11

12.27 Class
javacardx. framework.tlv.TLVException
public static final short INVALID_PARAM = 1;
public static final short ILLEGAL_SIZE = 2;

3;

4;

public static final short MALFORMED_TAG = 5;

public static final short EMPTY_ TAG

public static final short EMPTY_TLV

public static final short MALFORMED_TLV = 6;

public static final short INSUFFICIENT_STORAGE = 7;

public static final short TAG_SIZE_GREATER_THAN_127 = 8;
public static final short TAG_NUMBER_GREATER_THAN 32767 = 9;
public static final short TLV_SIZE_GREATER_THAN_ 32767 = 10;
public static final short TLV_LENGTH_GREATER_THAN 32767 = 11;

12.28 Class
javacardx. framework.util.UtilException

public static final short ILLEGAL_VALUE = 1;
public static final short TYPE _MISMATCHED = 2;

12-12 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

Glossary

active applet
instance

AID (application
identifier)

APDU
API

applet

applet developer

applet execution
context

applet firewall

applet package

assigned logical
channel

an applet instance that is selected on at least one of the logical channels.

defined by ISO 7816, a string used to uniquely identify card applications and
certain types of files in card file systems. An AID consists of two distinct
pieces: a 5-byte RID (resource identifier) and a 0 to 11-byte PIX (proprietary
identifier extension). The RID is a resource identifier assigned to companies by
ISO. The PIX identifiers are assigned by companies.

A unique AID is assigned for each package. In addition, a unique AID is
assigned for each applet in the package. The package AID and the default AID
for each applet defined in the package are specified in the CAP file. They are
supplied to the converter when the CAP file is generated.

an acronym for Application Protocol Data Unit as defined in ISO 7816-4.

an acronym for Application Programming Interface. The API defines calling
conventions by which an application program accesses the operating system
and other services.

within the context of this document, a Java Card applet, which is the basic unit
of selection, context, functionality, and security in Java Card technology.

a person creating an applet using Java Card technology.

context of a package that contains currently active applet.

the mechanism that prevents unauthorized accesses to objects in contexts other
than currently active context.

see library package.

the logical channel on which the applet instance is either the active applet
instance or will become the active applet instance.

Glossary-1

atomic operation

atomicity

ATR

basic logical channel

big-endian

binary compatibility

bytecode

CAD

CAP file

CAP file component

Glossary-2

card session

cast

an operation that either completes in its entirety or no part of the operation
completes at all.

state in which a particular operation is atomic. Atomicity of data updates
guarantee that data are not corrupted in case of power loss or card removal.

an acronym for Answer to Reset. An ATR is a string of bytes sent by the Java
Card platform after a reset condition.

logical channel 0, the only channel that is active at card reset. This channel is
permanent and can never be closed.

a technique of storing multibyte data where the high-order bytes come first.
For example, given an 8-bit data item stored in big-endian order, the first bit
read is considered the high bit.

in a Java Card system, a change in a Java programming language package
results in a new CAP file. A new CAP file is binary compatible with
(equivalently, does not break compatibility with) a preexisting CAP file if
another CAP file converted using the export file of the preexisting CAP file can
link with the new CAP file without errors.

machine-independent code generated by the compiler and executed by the Java
virtual machine.

an acronym for Card Acceptance Device. The CAD is the device in which the
card is inserted.

the CAP file is produced by the Converter and is the standard file format for
the binary compatibility of the Java Card platform. A CAP file contains an
executable binary representation of the classes of a Java programming
language package. The CAP file also contains the CAP file components (see also
CAP file component). The CAP files produced by the converter are contained in
Java™ Archive (JAR) files.

a Java Card platform CAP file consists of a set of components which represent a
Java programming language package. Each component describes a set of
elements in the Java programming language package, or an aspect of the CAP
file. A complete CAP file must contain all of the required components: Header,
Directory, Import, Constant Pool, Method, Static Field, and Reference Location.

The following components are optional: the Applet, Export, and Debug. The
Applet component is included only if one or more Applets are defined in the
package. The Export component is included only if classes in other packages
may import elements in the package defined. The Debug component is
optional. It contains all of the data necessary for debugging a package.

a card session begins with the insertion of the card into the CAD. The card is
then able to exchange streams of APDUs with the CAD. The card session ends
when the card is removed from the CAD.

the explicit conversion from one data type to another.

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

constant pool

context

context switch

Converter

currently active

context

currently selected
applet

custom CAP file
component

default applet

EEPROM

entry point objects

the constant pool contains variable-length structures representing various
string constants, class names, field names, and other constants referred to
within the CAP file and the Export File structure. Each of the constant pool
entries, including entry zero, is a variable-length structure whose format is
indicated by its first tag byte. There are no ordering constraints on entries in
the constant pool entries. One constant pool is associated with each package.

There are differences between the Java platform constant pool and the Java
Card technology-based constant pool. For example, in the Java platform
constant pool there is one constant type for method references, while in the
Java Card constant pool, there are three constant types for method references.
The additional information provided by a constant type in Java Card
technologies simplifies resolution of references.

protected object space associated with each applet package and Java Card RE.
All objects owned by an applet belong to context of the applet's package.

a change from one currently active context to another. For example, a context
switch is caused by an attempt to access an object that belongs to an applet
instance that resides in a different package. The result of a context switch is a
new currently active context.

a piece of software that preprocesses all of the Java programming language
class files that make up a package, and converts the package to a CAP file. The
Converter also produces an export file.

when an object instance method is invoked, an owning context of this object
becomes the currently active context.

the Java Card RE keeps track of the currently selected Java Card applet. Upon
receiving a SELECT FILE command with this applet’s AID, the Java Card RE
makes this applet the currently selected applet. The Java Card RE sends all
APDU commands to the currently selected applet.

a new component added to the CAP file. The new component must conform to
the general component format. It is silently ignored by a Java Card virtual
machine that does not recognize the component. The identifiers associated
with the new component are recorded in the custom_component item of the
CAP file's Directory component.

an applet that is selected by default on a logical channel when it is opened. If
an applet is designated the default applet on a particular logical channel on the
Java Card platform, it becomes the active applet by default when that logical
channel is opened using the basic channel.

an acronym for Electrically Erasable, Programmable Read Only Memory.

see Java Card RE entry point objects.

Glossary-3

Export file

externally visible

finalization

firewall

flash memory

framework

garbage collection

heap

installer

installation program

a file produced by the Converter that represents the fields and methods of a
package that can be imported by classes in other packages.

in the Java Card platform, any classes, interfaces, their constructors, methods,
and fields that can be accessed from another package according to the Java
programming language semantics, as defined by the Java Language Specification,
and Java Card API package access control restrictions (see Java Language
Specification, section 2.2.1.1).

Externally visible items may be represented in an export file. For a library
package, all externally visible items are represented in an export file. For an
applet package, only those externally visible items that are part of a shareable
interface are represented in an export file.

the process by which a Java virtual machine (VM) allows an unreferenced
object instance to release non-memory resources (for example, close and open
files) prior to reclaiming the object's memory. Finalization is only performed
on an object when that object is ready to be garbage collected (meaning, there
are no references to the object).

Finalization is not supported by the Java Card virtual machine. The method
finalize () is not called automatically by the Java Card virtual machine.

see applet firewall.

a type of persistent mutable memory. It is more efficient in space and power
than EPROM. Flash memory can be read bit by bit but can be updated only as
a block. Thus, flash memory is typically used for storing additional programs
or large chunks of data that are updated as a whole.

the set of classes that implement the API. This includes core and extension
packages. Responsibilities include applet selection, sending APDU bytes, and
managing atomicity.

the process by which dynamically allocated storage is automatically reclaimed
during the execution of a program.

a common pool of free memory usable by a program. A part of the computer's
memory used for dynamic memory allocation, in which blocks of memory are
used in an arbitrary order. The Java Card virtual machine's heap is not
required to be garbage collected. Objects allocated from the heap are not
necessarily reclaimed.

the on-card mechanism to download and install CAP files. The installer receives
executable binary from the off-card installation program, writes the binary into
the smart card memory, links it with the other classes on the card, and creates
and initializes any data structures used internally by the Java Card Runtime
Environment.

the off-card mechanism that employs a card acceptance device (CAD) to
transmit the executable binary in a CAP file to the installer running on the card.

Glossary-4 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢« March 2006

instance variables

instantiation

instruction

internally visible

JAR file

Java Card Platform
Remote Method
Invocation

Java Card Runtime
Environment (Java
Card RE)

Java Card Virtual
Machine (Java Card
VM)

Java Card RE entry
point objects

also known as non-static fields.

in object-oriented programming, to produce a particular object from its class
template. This involves allocation of a data structure with the types specified
by the template, and initialization of instance variables with either default
values or those provided by the class’s constructor function.

a statement that indicates an operation for the computer to perform and any
data to be used in performing the operation. An instruction can be in machine
language or a programming language.

items that are not externally visible. These items are not described in a
package’s export file, but some such items use private tokens to represent
internal references. See also externally visible.

an acronym for Java Archive file, which is a file format used for aggregating
many files into one.

a subset of the Java Platform Remote Method Invocation (RMI) system. It
provides a mechanism for a client application running on the CAD platform to
invoke a method on a remote object on the card.

consists of the Java Card virtual machine, the framework, and the associated
native methods.

a subset of the Java virtual machine, which is designed to be run on smart
cards and other resource-constrained devices. The Java Card VM acts an
engine that loads Java class files and executes them with a particular set of
semantics.

objects owned by the Java Card RE context that contain entry point methods.
These methods can be invoked from any context and allow non-privileged
users (applets) to request privileged Java Card RE system services. Java Card
RE entry point objects can be either temporary or permanent:

temporary - references to temporary Java Card RE entry point objects cannot
be stored in class variables, instance variables or array components. The Java
Card RE detects and restricts attempts to store references to these objects as
part of the firewall functionality to prevent unauthorized reuse. Examples of
these objects are APDU objects and all Java Card RE-owned exception objects.

permanent - references to permanent Java Card RE entry point objects can be
stored and freely reused. Examples of these objects are Java Card RE-owned
AID instances.

Glossary-5

JDK™ software

library package

local variable

logical channel

MAC

mask production
(masking)

method

multiselectable
applets

multiselected applet

namespace

native method

nibble

object-oriented

an acronym for Java Development Kit. The JDK software is a Sun
Microsystems, Inc. product that provides the environment required for
software development in the Java programming language. The JDK software is
available for a variety of operating systems, for example Sun Microsystems
Solaris™ OS and Microsoft Windows.

a Java programming language package that does not contain any non-abstract
classes that extend the class javacard. framework.Applet. An applet
package contains one or more non-abstract classes that extend the

javacard. framework.Applet class.

a data item known within a block, but inaccessible to code outside the block.
For example, any variable defined within a method is a local variable and
cannot be used outside the method.

as seen at the card edge, works as a logical link to an application on the card.
A logical channel establishes a communications session between a card applet
and the terminal. Commands issued on a specific logical channel are
forwarded to the active applet on that logical channel. For more information,
see the ISO/IEC 7816 Specification, Part 4. (http://www.1so.org).

an acronym for Message Authentication Code. MAC is an encryption of data
for security purposes.

refers to embedding the Java Card virtual machine, runtime environment, and
applets in the read-only memory of a smart card during manufacture.

a procedure or routine associated with one or more classes in object-oriented
languages.

implements the javacard. framework.MultiSelectable interface.
Multiselectable applets can be selected on multiple logical channels at the same
time. They can also accept other applets belonging to the same package being
selected simultaneously.

an applet instance that is selected and, therefore, active on more than one
logical channel simultaneously.

a set of names in which all names are unique.

a method that is not implemented in the Java programming language, but in
another language. The CAP file format does not support native methods.

four bits.

a programming methodology based on the concept of an object, which is a data
structure encapsulated with a set of routines, called methods, which operate on
the data.

Glossary-6 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

http://www.iso.org

object owner the applet instance within the currently active context when the object is
instantiated. An object can be owned by an applet instance, or by the Java Card
RE.

objects in object-oriented programming, unique instances of a data structure defined
according to the template provided by its class. Each object has its own values
for the variables belonging to its class and can respond to the messages
(methods) defined by its class.

origin logical
channel the logical channel on which an APDU command is issued.

owning context the context in which an object is instantiated or created.

package anamespace within the Java programming language that can have classes and
interfaces.

PCD an acronym for Proximity Coupling Device. The PCD is a contactless card
reader device.

persistent object persistent objects and their values persist from one CAD session to the next,
indefinitely. Objects are persistent by default. Persistent object values are
updated atomically using transactions. The term persistent does not mean
there is an object-oriented database on the card or that objects are serialized
and deserialized, just that the objects are not lost when the card loses power.

PIX see AID.

RAM (random access
memory) temporary working space for storing and modifying data. RAM is non-
persistent memory; that is, the information content is not preserved when
power is removed from the memory cell. RAM can be accessed an unlimited
number of times and none of the restrictions of EEPROM apply.

reference
implementation a fully functional and compatible implementation of a given technology. It
enables developers to build prototypes of applications based on the
technology.

Glossary-7

remote interface

remote methods

remote object

RFU
RID
RMI

ROM (read-only

memory)

runtime
environment

shareable interface

shareable interface

Glossary-8

object (SIO)

smart card

an interface which extends, directly or indirectly, the interface
java.rmi.Remote.

Each method declaration in the remote interface or its super-interfaces includes
the exception java.rmi.RemoteException (or one of its superclasses) in its
throws clause.

In a remote method declaration, if a remote object is declared as a return type,
it is declared as the remote interface, not the implementation class of that
interface.

In addition, Java Card RMI imposes additional constraints on the definition of
remote methods. These constraints are as a result of the Java Card platform
language subset and other feature limitations.

the methods of a remote interface.

an object whose remote methods can be invoked remotely from the CAD client.
A remote object is described by one or more remote interfaces.

acronym for Reserved for Future Use.
see AID.

an acronym for Remote Method Invocation. RMI is a mechanism for invoking
instance methods on objects located on remote virtual machines (meaning, a
virtual machine other than that of the invoker).

memory used for storing the fixed program of the card. A smart card’s ROM
contains operating system routines as well as permanent data and user
applications. No power is needed to hold data in this kind of memory. ROM
cannot be written to after the card is manufactured. Writing a binary image to
the ROM is called masking and occurs during the chip manufacturing process.

see Java Card Runtime Environment (Java Card RE).

an interface that defines a set of shared methods. These interface methods can
be invoked from an applet in one context when the object implementing them
is owned by an applet in another context.

an object that implements the shareable interface.

a card that stores and processes information through the electronic circuits
embedded in silicon in the substrate of its body. Unlike magnetic stripe cards,
smart cards carry both processing power and information. They do not require
access to remote databases at the time of a transaction.

Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

terminal

thread

transaction

transient object

verification

word

a Card Acceptance Device that is typically a computer in its own right and can
integrate a card reader as one of its components. In addition to being a smart
card reader, a terminal can process data exchanged between itself and the
smart card.

the basic unit of program execution. A process can have several threads
running concurrently each performing a different job, such as waiting for
events or performing a time consuming job that the program doesn't need to
complete before going on. When a thread has finished its job, it is suspended
or destroyed.

The Java Card virtual machine can support only a single thread of execution.
Java Card technology programs cannot use class Thread or any of the thread-
related keywords in the Java programming language.

an atomic operation in which the developer defines the extent of the operation
by indicating in the program code the beginning and end of the transaction.

the state of transient objects do not persist from one CAD session to the next,
and are reset to a default state at specified intervals. Updates to the values of
transient objects are not atomic and are not affected by transactions.

a process performed on a CAP file that ensures that the binary representation of
the package is structurally correct.

an abstract storage unit. A word is large enough to hold a value of type byte,
short, reference or returnAddress. Two words are large enough to hold
a value of integer type.

Glossary-9

Glossary-10 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

Index

A

accessing
array object methods, 6-19
array objects, 6-16
class instance object fields, 6-17

class instance object methods, 6-17

class instance objects, 6-18
objects, 6-6
across contexts, 6-8
shareable interface, 6-19
methods, 6-18

standard interface methods, 6-17

standard interfaces, 6-19
static class fields, 6-16
active applet instance, 4-1,4-3
APDU class, 9-2
incoming data transfers
T=1 specifics, 9-7
outgoing data transfers
T=0 specifics, 9-2
T=1 specifics, 9-5
APDU commands
See commands
API, 9-1
constants
See constants, API
applet
active instance, 4-1,4-3
context, 4-7
currently selected instance, 4-3
default
card instance, 4-4
instance, 4-4

selection behavior, 4-6

deletion, 3-1, 11-1

manager, 11-7

deselection, 3-2,4-17
firewall, 6-1, 6-4
installation, 3-1, 11-1

parameters, 11-6

installer, 11-2

isolation, 6-1

legacy, 4-2
multiselectable, 4-3,4-6
selected, 4-3

selection, 3-2,4-1,4-13, 8-3

MANAGE CHANNEL OPEN, 4-13
SELECT FILE, 4-15

arrays
accessing object methods, 6-19
global, 6-9,7-5
objects, accessing, 6-16
atomicity, 7-1

basic logical channel, 4-2,4-4

(o

CAD, 2-1

card

initialization time, 2-1
reset behavior, 4-5
sessions, 2-1

Card Acceptance Device, 2-1

class

Index-1

access behavior, 6-15
javacard.framework. APDU, 12-1
javacard.framework. APDUException, 12-2
javacard.framework.PINException, 12-3
javacard.framework.service.Dispatcher, 12-4
javacard.framework.service. RMIService, 12-4
javacard.framework.service.ServiceException, 1
2-5
javacard.framework.SystemException, 12-4
javacard.framework.TransactionException, 12-4
javacard.security.Checksum, 12-5
javacard.security.CryptoException, 12-5
javacard.security. Key Agreement, 12-5
javacard.security.KeyBuilder, 12-6
javacard.security.KeyPair, 12-7
javacard.security.MessageDigest, 12-7
javacard.security.RandomData, 12-8
javacard.security.Signature, 12-8
javacardx.crypto.Cipher, 12-9,12-10

commands

APDU formats, 8-11

INVOKE, 8-14

MANAGE CHANNEL CLOSE, 4-17
MANAGE CHANNEL OPEN, 4-13
MANAGE CHANNEL processing, 4-12
processing, 4-19

SELECT FILE, 4-15, 8-12

commit capacity, 7-5
component, 5-1
constants

API
javacard.framework.APDU, 12-1
javacard.framework. APDUException, 12-2
javacard.framework.ISO7816, 12-2
javacard.framework.JCSystem, 12-3
javacard.framework.PINException, 12-3
javacard.framework.service.Dispatcher, 12-4
javacard.framework.service RMIService, 12-4
javacard.framework.service.ServiceException,
12-5
javacard.framework.SystemException, 12-4
javacard.framework.TransactionException, 1
2-4
javacard.security.Checksum, 12-5
javacard.security.CryptoException, 12-5
javacard.security.KeyAgreement, 12-5
javacard.security.KeyBuilder, 12-6
javacard.security.KeyPair, 12-7

javacard.security.MessageDigest, 12-7
javacard.security.RandomData, 12-8
javacard.security.Signature, 12-8
javacardx.crypto.Cipher, 12-9, 12-10
contexts, 6-2, 6-13
currently active, 6-3
Java Card RE, 6-3, 6-10
object accessing across, 6-8
rules in firewall, 6-4
switching, 6-2,7-5
in the VM, 6-4
system, 6-10
crypto packages, 9-9
currently selected applet instance, 4-3

D

data formats, 8-4
deletion, 3-1
applet, 11-1, 11-7
deselect method, 3-3
deselection, 3-2
applets, 4-17

E

encoding
error response, 8-11
exception response, 8-10
normal response, 8-9
parameter, 8-8
return value, 8-9
error response encoding, 8-11
exceptions
objects, 6-18
response encoding, 8-10
thrown by the API, 9-1

F
fields, 5-1
accessing class instance object, 6-17
accessing static class, 6-16
static, 6-7
firewall
See applet, firewall
formats
APDU command, 8-11
data, 8-4

Index-2 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

G
global arrays, 6-9

|

install method, 3-1

installation, 3-1
applet, 11-1
parameters, 11-6

interfaces
accessing shareable, 6-19
accessing shareable methods, 6-18
accessing standard, 6-19
accessing standard methods, 6-17
javacard.framework.ISO7816, 12-2
shareable, 6-10, 6-13

INVOKE command, 8-14

isolation, 6-1

J

Java Card applet
See applet

Java Card RE

cleanup, 7-4

entry point objects, 6-8

privileges, 6-10
Java Card Remote Method Invocation

See Java Card RMI
Java Card RMI, 8-1

messages, 8-3
Java virtual machine, 2-1
javacard.framework.APDU class, 12-1
javacard.framework. APDUException class, 12-2
javacard.framework.ISO7816 interface, 12-2
javacard.framework.JCSystem, 12-3
javacard.framework.PINException class, 12-3
javacard.framework.service.Dispatcher class, 12-4
javacard.framework.service. RMIService class, 12-4
javacard.framework.service.ServiceException

class, 12-5
javacard.framework.SystemException class, 12-4
javacard.framework.TransactionException

class, 12-4
javacard.security.Checksum class, 12-5
javacard.security.CryptoException class, 12-5
javacard.security. Key Agreement class, 12-5

javacard.security.KeyBuilder class, 12-6
javacard.security.KeyPair class, 12-7
javacard.security.MessageDigest class, 12-7
javacard.security. RandomData class, 12-8
javacard.security.Signature class, 12-8
javacardx.crypto.Cipher class, 12-9, 12-10
JCSystem class, 9-10

L
legacy applets, 4-2
logical channels, 4-1
basic, 4-2,4-4
closing, 4-11
forwarding APDU commands to, 4-9
opening, 4-11

M
MANAGE CHANNEL CLOSE, 4-18
MANAGE CHANNEL command processing, 4-12
MANAGE CHANNEL OPEN, 4-13
messages
Java Card RMI, 8-3
methods
accessing
array object, 6-19
class instance object, 6-17
shareable interface, 6-18
standard interface, 6-17
deselect, 3-3
identifier, 8-7
install, 3-1
invocation, 8-4
process, 3-3
select, 3-2
static, 6-7
multichannel dispatching mechanism, 4-12
multiselectable applets, 4-3, 4-6
multiselection attempt, 4-7
multi-session functionality, 4-2

(o)

objects
access behavior, 6-15
accessing, 6-6
across contexts, 6-8
array, 6-16

Index-3

array methods, 6-19
class instance, 6-18

class instance fields, 6-17
class instance methods, 6-17
Java Card RE entry point, 6-8

ownership, 6-4
persistent, 2-1,5-2
remote, 8-1

remote identifier, 8-5

remote reference descriptor, 8-5

sharing, 6-1
throwing exception, 6-18
transient, 5-1, 7-5

CLEAR_ON_DESELECT, 5-2, 6-6
CLEAR_ON_RESET, 5-2, 6-6

clearing, 5-2
contexts, 6-6
required behavior, 5-1

P
packages

crypto, 9-9

security, 9-9
parameter encoding, 8-8
persistent objects, 2-1
power loss, 3-4
process method, 3-3

R

remote methods, 8-1
remote object

identifier, 8-5

reference descriptor, 8-5
reset, 3-4,7-3

card behavior, 4-5
return value encoding, 8-9
RMI

See Java Card RMI
RMIService Class, 8-14

S

security
packages, 9-9
violations, 10-1
SELECT FILE, 4-15
SELECT FILE command, 8-12

select method, 3-2
selected applet, 4-3
selection, 3-2
applet, 4-13, 8-3
Shareable Interface Objects
See SIOs
shareable interfaces
See interfaces, shareable
SIOs, 6-7, 6-11
obtaining, 6-14
static
accessing class fields, 6-16
fields, 6-7
methods, 6-7

T
tear, 7-3
transactions, 7-1
aborting, 7-3
duration, 7-2
failure, 7-3
nested, 7-3
within the API, 9-2
transient keyword, 5-1
transient objects
See objects, transient

Vv

virtual machine, 10-1
resource failures, 10-1
security violations, 10-1

Index-4 Runtime Environment Specification, Java Card Platform, Version 2.2.2 ¢ March 2006

	Runtime Environment Specification
	Contents
	Figures
	Preface
	Who Should Use This Specification
	Before You Read This Specification
	How This Specification Is Organized
	Related Books
	Typographic Conventions
	Accessing Sun Documentation Online
	Sun Welcomes Your Comments

	Introduction
	Lifetime of the Java Card Virtual Machine
	Java Card Applet Lifetime
	3.1 install Method
	3.2 select Method
	3.3 process Method
	3.4 deselect Method(s)
	3.5 uninstall Method
	3.6 Power Loss and Reset
	3.6.1 Concurrent Operations Over Multiple Interfaces

	Logical Channels and Applet Selection
	4.1 Default Applets
	4.1.1 Card Reset Behavior
	4.1.2 Proximity Card (PICC) Activation Behavior
	4.1.3 Default Applet Selection Behavior on Opening a New Channel

	4.2 Multiselectable Applets
	4.3 Forwarding APDU Commands To a Logical Channel
	4.4 Opening and Closing Logical Channels
	4.4.1 MANAGE CHANNEL Command Processing

	4.5 Applet Selection
	4.5.1 Applet Selection with MANAGE CHANNEL OPEN
	4.5.2 Applet Selection with SELECT FILE

	4.6 Applet Deselection
	4.6.1 MANAGE CHANNEL CLOSE Command

	4.7 Other Command Processing

	Transient Objects
	5.1 Events That Clear Transient Objects

	Applet Isolation and Object Sharing
	6.1 Applet Firewall
	6.1.1 Firewall Protection
	6.1.2 Contexts and Context Switching
	6.1.3 Object Ownership
	6.1.4 Object Access
	6.1.5 Transient Objects and Contexts
	6.1.6 Static Fields and Methods

	6.2 Object Access Across Contexts
	6.2.1 Java Card RE Entry Point Objects
	6.2.2 Global Arrays
	6.2.3 Java Card RE Privileges
	6.2.4 Shareable Interfaces
	6.2.5 Determining the Previous Context
	6.2.6 Shareable Interface Details
	6.2.7 Obtaining Shareable Interface Objects
	6.2.8 Class and Object Access Behavior

	Transactions and Atomicity
	7.1 Atomicity
	7.2 Transactions
	7.3 Transaction Duration
	7.4 Nested Transactions
	7.5 Tear or Reset Transaction Failure
	7.6 Aborting a Transaction
	7.6.1 Programmatic Abortion
	7.6.2 Abortion by the Java Card RE
	7.6.3 Cleanup Responsibilities of the Java Card RE

	7.7 Transient Objects and Global Arrays
	7.8 Commit Capacity
	7.9 Context Switching

	Remote Method Invocation Service
	8.1 Java Card Platform RMI
	8.1.1 Remote Objects

	8.2 RMI Messages
	8.2.1 Applet Selection
	8.2.2 Method Invocation

	8.3 Data Formats
	8.3.1 Remote Object Identifier
	8.3.2 Remote Object Reference Descriptor
	8.3.3 Method Identifier
	8.3.4 Parameter Encoding
	8.3.5 Return Value Encoding

	8.4 APDU Command Formats
	8.4.1 SELECT FILE Command
	8.4.2 INVOKE Command

	8.5 RMIService Class
	8.5.1 setInvokeInstructionByte Method
	8.5.2 processCommand Method

	API Topics
	9.1 Resource Use Within the API
	9.2 Exceptions Thrown by API Classes
	9.3 Transactions Within the API
	9.4 APDU Class
	9.4.1 T=0 Specifics for Outgoing Data Transfers
	9.4.2 T=1 Specifics for Outgoing Data Transfers
	9.4.3 T=1 Specifics for Incoming Data Transfers
	9.4.4 Extended Length APDU Specifics

	9.5 Security and Crypto Packages
	9.6 JCSystem Class
	9.7 Optional Extension Packages

	Virtual Machine Topics
	10.1 Resource Failures
	10.2 Security Violations

	Applet Installation and Deletion
	11.1 The Installer
	11.1.1 Installer Implementation
	11.1.2 Installer AID
	11.1.3 Installer APDUs
	11.1.4 CAP File Versions
	11.1.5 Installer Behavior
	11.1.6 Installer Privileges

	11.2 The Newly Installed Applet
	11.2.1 Installation Parameters

	11.3 The Applet Deletion Manager
	11.3.1 Applet Deletion Manager Implementation
	11.3.2 Applet Deletion Manager AID
	11.3.3 Applet Deletion Manager APDUs
	11.3.4 Applet Deletion Manager Behavior
	11.3.5 Applet Deletion Manager Privileges

	API Constants
	12.1 Class javacard.framework.APDU
	12.2 Class javacard.framework.APDUException
	12.3 Interface javacard.framework.ISO7816
	12.4 Class javacard.framework.JCSystem
	12.5 Class javacard.framework.PINException
	12.6 Class javacard.framework.SystemException
	12.7 Class javacard.framework.TransactionExceptio n
	12.8 Class javacard.framework.service.Dispatcher
	12.9 Class javacard.framework.service.RMIService
	12.10 Class javacard.framework.service.ServiceExce ption
	12.11 Class javacard.security.Checksum
	12.12 Class javacard.security.CryptoException
	12.13 Class javacard.security.KeyAgreement
	12.14 Class javacard.security.KeyBuilder
	12.15 Class javacard.security.KeyPair
	12.16 Class javacard.security.MessageDigest
	12.17 Class javacard.security.RandomData
	12.18 Class javacard.security.Signature
	12.19 Class javacardx.biometry.BioBuilder
	12.20 Class javacardx.biometry.BioException
	12.21 Class javacardx.biometry.BioTemplate
	12.22 Class javacardx.crypto.Cipher
	12.23 Class javacardx.external.ExternalExeption
	12.24 Class javacardx.external.Memory
	12.25 Class javacardx.framework.math.BigNumber
	12.26 Class javacardx.framework.tlv.BERTag
	12.27 Class javacardx.framework.tlv.TLVException
	12.28 Class javacardx.framework.util.UtilException

	Glossary
	Index

