
Sun Microsystems, Inc.
www.sun.com

Virtual Machine Specification

Java Card™ Platform, Version 2.2.2

3-15-06

Please
Recycle

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Java Card, Java Developer Connection, Javadoc, JDK, JVM, J2ME, NetBeans and J2SE are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Contents

Preface xvii

1. Introduction 1–1

1.1 Motivation 1-1

1.2 The Java Card Virtual Machine 1-2

1.3 Java Language Security 1-4

1.4 Java Card Runtime Environment Security 1-5

2. A Subset of the Java Virtual Machine 2–1

2.1 Why a Subset is Needed 2-1

2.2 Java Card Platform Language Subset 2-1

2.2.1 Unsupported Items 2–2

2.2.1.1 Unsupported Features 2–2

2.2.1.2 Keywords 2–4

2.2.1.3 Unsupported Types 2–4

2.2.1.4 Classes 2–5

2.2.2 Supported Items 2–5

2.2.2.1 Features 2–5

2.2.2.2 Keywords 2–7

2.2.2.3 Types 2–7
iii

2.2.2.4 Classes 2–7

2.2.3 Optionally Supported Items 2–8

2.2.3.1 Integer Data Type 2–8

2.2.3.2 Object Deletion Mechanism 2–8

2.2.4 Limitations of the Java Card Virtual Machine 2–8

2.2.4.1 Packages 2–9

2.2.4.2 Classes 2–9

2.2.4.3 Objects 2–10

2.2.4.4 Methods 2–10

2.2.4.5 Switch Statements 2–11

2.2.4.6 Class Initialization 2–11

2.2.5 Multiselectable Applets Restrictions 2–12

2.2.6 Java Card Platform Remote Method Invocation (RMI)
Restrictions 2–12

2.2.6.1 Remote Classes and Remote Interfaces 2–12

2.2.6.2 Access Control of Remote Interfaces 2–12

2.2.6.3 Parameters and Return Values 2–13

2.3 Java Card VM Subset 2-13

2.3.1 class File Subset 2–13

2.3.1.1 Not Supported in Class Files 2–14

2.3.1.2 Supported in Class Files 2–15

2.3.2 Bytecode Subset 2–16

2.3.2.1 Unsupported Bytecodes 2–17

2.3.2.2 Supported Bytecodes 2–17

2.3.2.3 Static Restrictions on Bytecodes 2–18

2.3.3 Exceptions 2–19

2.3.3.1 Uncaught and Uncatchable Exceptions 2–19

2.3.3.2 Checked Exceptions 2–20

2.3.3.3 Runtime Exceptions 2–21
iv Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

2.3.3.4 Errors 2–21

3. Structure of the Java Card Virtual Machine 3–1

3.1 Data Types and Values 3-1

3.2 Words 3-2

3.3 Runtime Data Areas 3-2

3.4 Contexts 3-2

3.5 Frames 3-3

3.6 Representation of Objects 3-3

3.7 Special Initialization Methods 3-3

3.8 Exceptions 3-4

3.9 Binary File Formats 3-4

3.10 Instruction Set Summary 3-4

3.10.1 Types and the Java Card Virtual Machine 3–5

4. Binary Representation 4–1

4.1 Java Card Platform File Formats 4-1

4.1.1 Export File Format 4–2

4.1.2 CAP File Format 4–2

4.1.3 JAR File Container 4–2

4.2 AID-based Naming 4-3

4.2.1 The AID Format 4–3

4.2.2 AID Usage 4–4

4.3 Token-based Linking 4-5

4.3.1 Externally Visible Items 4–5

4.3.2 Private Tokens 4–5

4.3.3 The Export File and Conversion 4–6

4.3.4 References – External and Internal 4–6

4.3.5 Installation and Linking 4–7
Contents v

4.3.6 Token Assignment 4–7

4.3.7 Token Details 4–7

4.3.7.1 Package 4–8

4.3.7.2 Classes and Interfaces 4–8

4.3.7.3 Static Fields 4–8

4.3.7.4 Static Methods and Constructors 4–8

4.3.7.5 Instance Fields 4–9

4.3.7.6 Virtual Methods 4–9

4.3.7.7 Interface Methods 4–10

4.4 Binary Compatibility 4-11

4.5 Package Versions 4-13

4.5.1 Assigning 4–13

4.5.2 Linking 4–13

5. The Export File Format 5–1

5.1 Export File Name 5-2

5.2 Containment in a JAR File 5-2

5.3 Ownership 5-2

5.4 Hierarchies Represented 5-3

5.5 Export File 5-3

5.6 Constant Pool 5-4

5.6.1 CONSTANT_Package 5–5

5.6.2 CONSTANT_Classref 5–6

5.6.3 CONSTANT_Integer 5–7

5.6.4 CONSTANT_Utf8 5–7

5.7 Classes and Interfaces 5-8

5.8 Fields 5-11

5.9 Methods 5-13

5.10 Attributes 5-15
vi Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

5.10.1 ConstantValue Attribute 5–15

6. The CAP File Format 6–1

6.1 Component Model 6-2

6.1.1 Containment in a JAR File 6–3

6.1.2 Defining New Components 6–4

6.2 Installation 6-5

6.3 Header Component 6-6

6.4 Directory Component 6-9

6.5 Applet Component 6-12

6.6 Import Component 6-13

6.7 Constant Pool Component 6-14

6.7.1 CONSTANT_Classref 6–16

6.7.2 CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref,
and CONSTANT_SuperMethodref 6–18

6.7.3 CONSTANT_StaticFieldref and CONSTANT_StaticMethodref 6–
19

6.8 Class Component 6-21

6.8.1 type_descriptor 6–23

6.8.2 interface_info and class_info 6–26

6.8.2.1 interface_info and class_info shared Items 6–26

6.8.2.2 interface_info Items 6–28

6.8.2.3 class_info Items 6–28

6.8.2.4 implemented_interface_info 6–32

6.8.2.5 remote_interface_info 6–32

6.9 Method Component 6-35

6.9.1 exception_handler_info 6–37

6.9.2 method_info 6–38

6.10 Static Field Component 6-41

6.11 Reference Location Component 6-44
Contents vii

6.12 Export Component 6-47

6.13 Descriptor Component 6-49

6.13.1 class_descriptor_info 6–50

6.13.2 field_descriptor_info 6–52

6.13.3 method_descriptor_info 6–54

6.13.4 type_descriptor_info 6–56

6.14 Debug Component 6-57

6.14.1 The class_debug_info Structure 6–58

6.14.1.1 The field_debug_info Structure 6–61

6.14.1.2 The method_debug_info Structure 6–62

7. Java Card Virtual Machine Instruction Set 7–1

7.1 Assumptions: The Meaning of “Must” 7-1

7.2 Reserved Opcodes 7-2

7.3 Virtual Machine Errors 7-2

7.4 Security Exceptions 7-3

7.5 The Java Card Virtual Machine Instruction Set 7-3

7.5.1 aaload 7–5

7.5.2 aastore 7–6

7.5.3 aconst_null 7–8

7.5.4 aload 7–8

7.5.5 aload_<n> 7–9

7.5.6 anewarray 7–10

7.5.7 areturn 7–10

7.5.8 arraylength 7–11

7.5.9 astore 7–12

7.5.10 astore_<n> 7–12

7.5.11 athrow 7–13

7.5.12 baload 7–14
viii Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

7.5.13 bastore 7–15

7.5.14 bipush 7–16

7.5.15 bspush 7–16

7.5.16 checkcast 7–17

7.5.17 dup 7–19

7.5.18 dup_x 7–20

7.5.19 dup2 7–21

7.5.20 getfield_<t> 7–22

7.5.21 getfield_<t>_this 7–23

7.5.22 getfield_<t>_w 7–25

7.5.23 getstatic_<t> 7–26

7.5.24 goto 7–27

7.5.25 goto_w 7–28

7.5.26 i2b 7–29

7.5.27 i2s 7–29

7.5.28 iadd 7–30

7.5.29 iaload 7–31

7.5.30 iand 7–32

7.5.31 iastore 7–32

7.5.32 icmp 7–33

7.5.33 iconst_<i> 7–34

7.5.34 idiv 7–34

7.5.35 if_acmp<cond> 7–35

7.5.36 if_acmp<cond>_w 7–36

7.5.37 if_scmp<cond> 7–37

7.5.38 if_scmp<cond>_w 7–38

7.5.39 if<cond> 7–39

7.5.40 if<cond>_w 7–40
Contents ix

7.5.41 ifnonnull 7–41

7.5.42 ifnonnull_w 7–41

7.5.43 ifnull 7–42

7.5.44 ifnull_w 7–43

7.5.45 iinc 7–43

7.5.46 iinc_w 7–44

7.5.47 iipush 7–45

7.5.48 iload 7–46

7.5.49 iload_<n> 7–46

7.5.50 ilookupswitch 7–47

7.5.51 imul 7–49

7.5.52 ineg 7–49

7.5.53 instanceof 7–50

7.5.54 invokeinterface 7–52

7.5.55 invokespecial 7–54

7.5.56 invokestatic 7–55

7.5.57 invokevirtual 7–56

7.5.58 ior 7–58

7.5.59 irem 7–58

7.5.60 ireturn 7–59

7.5.61 ishl 7–60

7.5.62 ishr 7–61

7.5.63 istore 7–61

7.5.64 istore_<n> 7–62

7.5.65 isub 7–63

7.5.66 itableswitch 7–63

7.5.67 iushr 7–65

7.5.68 ixor 7–66
x Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

7.5.69 jsr 7–66

7.5.70 new 7–67

7.5.71 newarray 7–68

7.5.72 nop 7–69

7.5.73 pop 7–69

7.5.74 pop2 7–70

7.5.75 putfield_<t> 7–70

7.5.76 putfield_<t>_this 7–72

7.5.77 putfield_<t>_w 7–74

7.5.78 putstatic_<t> 7–75

7.5.79 ret 7–77

7.5.80 return 7–78

7.5.81 s2b 7–78

7.5.82 s2i 7–79

7.5.83 sadd 7–79

7.5.84 saload 7–80

7.5.85 sand 7–81

7.5.86 sastore 7–81

7.5.87 sconst_<s> 7–82

7.5.88 sdiv 7–83

7.5.89 sinc 7–83

7.5.90 sinc_w 7–84

7.5.91 sipush 7–85

7.5.92 sload 7–85

7.5.93 sload_<n> 7–86

7.5.94 slookupswitch 7–87

7.5.95 smul 7–88

7.5.96 sneg 7–88
Contents xi

7.5.97 sor 7–89

7.5.98 srem 7–90

7.5.99 sreturn 7–90

7.5.100 sshl 7–91

7.5.101 sshr 7–92

7.5.102 sspush 7–93

7.5.103 sstore 7–93

7.5.104 sstore_<n> 7–94

7.5.105 ssub 7–94

7.5.106 stableswitch 7–95

7.5.107 sushr 7–96

7.5.108 swap_x 7–97

7.5.109 sxor 7–98

8. Tables of Instructions 8–1

Glossary Glossary–1

Index Index–1
xii Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Figures

FIGURE 1-1 Java Card API Package Conversion 1–3

FIGURE 1-2 Java Card API Package Installation 1–3

FIGURE 4-1 Mapping Package Identifiers To AIDs 4–4

FIGURE 4-2 Binary Compatibility Example 4–11
xiii

xiv Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Tables

TABLE 2-1 Unsupported Keywords 2–4

TABLE 2-2 Supported Keywords 2–7

TABLE 2-3 Unsupported Java Constant Pool Tags 2–14

TABLE 2-4 Supported Java Constant Pool Tags 2–15

TABLE 2-5 Unsupported Bytecodes 2–17

TABLE 2-6 Supported Bytecodes 2–17

TABLE 2-7 Support of Java Checked Exceptions 2–20

TABLE 2-8 Support of Java Runtime Exceptions 2–21

TABLE 2-9 Support of Java Errors 2–21

TABLE 3-1 Type Support in the Java Card Virtual Machine Instruction Set 3–5

TABLE 3-2 Storage Types and Computational Types 3–7

TABLE 4-1 AID Format 4–4

TABLE 4-2 Token Range, Type and Scope 4–7

TABLE 4-3 Tokens For Instance Fields 4–9

TABLE 5-1 Export File Constant Pool Tags 5–5

TABLE 5-2 Export File Package Flags 5–5

TABLE 5-3 Export File Class Access and Modifier Flags 5–9

TABLE 5-4 Export File Field Access and Modifier Flags 5–12

TABLE 5-5 Export File Method Access and Modifier Flags 5–14

TABLE 6-1 CAP File Component Tags 6–2
xv

TABLE 6-2 CAP File Component File Names 6–3

TABLE 6-3 Reference Component Install Order 6–5

TABLE 6-4 CAP File Package Flags 6–7

TABLE 6-5 CAP File Constant Pool Tags 6–15

TABLE 6-6 Type Descriptor Values 6–24

TABLE 6-7 Encoded Reference Type p1.c1 6–24

TABLE 6-8 Encoded Byte Array Type 6–25

TABLE 6-9 Encoded Reference Array Type p1.c1 6–25

TABLE 6-10 Encoded Method Signature ()V 6–25

TABLE 6-11 Encoded Method Signature (Lp1.ci;)S 6–25

TABLE 6-12 CAP File Interface and Class Flags 6–27

TABLE 6-13 CAP File Method Flags 6–39

TABLE 6-14 Segments of a Static Field Image 6–41

TABLE 6-15 Static Field Sizes 6–42

TABLE 6-16 Array Types 6–43

TABLE 6-17 One-byte Reference Location Example 6–46

TABLE 6-18 CAP File Class Descriptor Flags 6–51

TABLE 6-19 CAP File Field Descriptor Flags 6–53

TABLE 6-20 Primitive Type Descriptor Values 6–54

TABLE 6-21 CAP File Method Descriptor Flags 6–55

TABLE 6-22 Class Access and Modifier Flags 6–59

TABLE 6-23 Field Access and Modifier Flags 6–61

TABLE 6-24 Method Modifier Flags 6–63

TABLE 7-1 Example Instruction Page 7–4

TABLE 7-2 Array Values 7–18

TABLE 7-3 Array Values 7–51

TABLE 7-4 Array Values 7–68

TABLE 8-1 Instructions by Opcode Value 8–1

TABLE 8-2 Instructions by Opcode Mnemonic 8–4
xvi Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Preface

Java Card™ technology combines a subset of the Java™ programming language
with a runtime environment optimized for smart cards and similar small-memory
embedded devices. The goal of Java Card technology is to bring many of the benefits
of Java software programming to the resource-constrained world of devices such as
smart cards.

The Java Card platform is defined by three specifications: this Virtual Machine
Specification for the Java Card Platform, Version 2.2.2, the Application Programming
Interface for the Java Card Platform, Version 2.2.2, and the Runtime Environment
Specification for the Java Card Platform, Version 2.2.2.

This specification describes the required behavior of the virtual machine (VM) for
the Java Card platform (“Java Card virtual machine” or “Java Card VM”), version
2.2.2, that developers should adhere to when creating an implementation. An
implementation within the context of this document refers to a licensee’s
implementation of the Java Card virtual machine, Application Programming
Interface (API), Converter, or other component, based on the Java Card technology
specifications. A “reference implementation” is an implementation produced by Sun
Microsystems, Inc. Application software written for the Java Card platform is
referred to as a Java Card technology-based applet (“Java Card applet” or “card
applet”).

Who Should Use This Specification
This document is for licensees of the Java Card technology to assist them in creating
an implementation, developing a specification to extend the Java Card technology
specifications, or in creating an extension to the runtime environment for the Java
Card platform (“Java Card Runtime Environment” or “Java Card RE”). This
document is also intended for Java Card applet developers who want a more
detailed understanding of the Java Card technology specifications.
xvii

Before You Read This Specification
Before reading this document, you should be familiar with the Java programming
language, the Java Card technology specifications, and smart card technology. A
good resource for becoming familiar with Java technology and Java Card technology
is the Sun Microsystems, Inc. web site, located at

http://java.sun.com

How This Book Is Organized
Chapter 1, “Introduction” provides an overview of the Java Card virtual machine
architecture.

Chapter 2, “A Subset of the Java Virtual Machine” describes the subset of the Java
programming language and Java Virtual Machine1 that is supported by the Java
Card specification.

Chapter 3, “Structure of the Java Card Virtual Machine” describes the differences
between the Java virtual machine and the Java Card virtual machine.

Chapter 4, “Binary Representation” provides information about how programs
written for the Java Card platform are represented in binary form.

Chapter 5, “The Export File Format” describes the export file used to link code
against another package.

Chapter 6, “The CAP File Format” describes the format of the CAP file.

Chapter 7, “Java Card Virtual Machine Instruction Set” describes the bytecodes
(opcodes) that comprise the Java Card virtual machine instruction set.

Chapter 8, “Tables of Instructions” summarizes the Java Card virtual machine
instructions in two different tables: one sorted by Opcode Value and the other sorted
by Mnemonic.

“Glossary” provides definitions of selected terms in this specification.

1. The terms "Java Virtual Machine" and "JVM" mean a Virtual Machine for the Java platform.
xviii Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

http://java.sun.com

Prerequisites
This specification is not intended to stand on its own; rather it relies heavily on
existing documentation of the Java platform. In particular, two books are required
for the reader to understand the material presented here.

The Java Language Specification by James Gosling, Bill Joy, and Guy L. Steele
(Addison-Wesley, 1996) ISBN 0-201-31008-2, contains the definitive definition of the
Java programming language. The Java Card platform, version 2.2.2, language subset
defined here is based on the language specified in this book.

The Java Virtual Machine Specification (Second Edition) by Tim Lindholm and Frank
Yellin. (Addison-Wesley, 1999) ISBN 0-201-43294-3, defines the standard operation of
the Java virtual machine. The Java Card virtual machine presented here is based on
the definition specified in this book.

Related Documents
References to various documents or products are made in this manual. You should
have the following documents available:

■ Application Programming Interface for the Java Card Platform, Version 2.2.2.

■ Runtime Environment Specification for the Java Card Platform, Version 2.2.2.

■ The Java Language Specification by James Gosling, Bill Joy, and Guy L. Steele
(Addison-Wesley, 1996).

■ The Java Virtual Machine Specification (Second Edition) by Tim Lindholm and Frank
Yellin (Addison-Wesley, 1999).

■ The Java Class Libraries: An Annotated Reference, Second Edition (Java Series) by
Patrick Chan, Rosanna Lee and Doug Kramer (Addison-Wesley, 1999).

■ The Java Remote Method Invocation Specification, Revision 1.7, Sun Microsystems,
Inc.

■ ISO 7816 International Standard, First Edition 1987-07-01,
(http://www.iso.org).
Preface xix

http://www.iso.org
http://www.iso.org
http://www.iso.org

Typographic Conventions

Acknowledgements
Java Card technology is based on Java technology. This specification could not exist
without all the hard work that went into the development of the Java platform
specifications. In particular, this specification is based significantly on Java Virtual
Machine Specification. In order to maintain consistency with that specification, as well
as to make differences easier to notice, we have, where possible, used the words, the
style, and even the visual design of that book. Many thanks to Tim Lindholm and
Frank Yellin for providing a solid foundation for our work.

TABLE P-1

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when
contrasted with on-screen
computer output
Procedural steps

% su
Password:

1. Run cref in a new window.

AaBbCc123 Book titles, new words or
terms, words to be emphasized

Command-line variable;
replace with a real name or
value

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.
xx Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Accessing Sun Documentation Online
The Java Developer Connection™ program web site enables you to access Java
platform technical documentation on the web at

http://developer.java.sun.com/developer/infodocs

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments
and suggestions. You can email your comments to us at docs@java.sun.com.
Preface xxi

http://developer.java.sun.com/developer/infodocs/

xxii Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

CHAPTER 1

Introduction

1.1 Motivation
Java Card technology enables programs written in the Java programming language
to be run on smart cards and other small, resource-constrained devices. Developers
can build and test programs using standard software development tools and
environments, then convert them into a form that can be installed onto a Java Card
technology-enabled device. Application software for the Java Card platform is called
an applet, or more specifically, a Java Card applet or card applet (to distinguish it
from browser applets).

While Java Card technology enables programs written in the Java programming
language to run on smart cards, such small devices are far too under-powered to
support the full functionality of the Java platform. Therefore, the Java Card platform
supports only a carefully chosen, customized subset of the features of the Java
platform. This subset provides features that are well-suited for writing programs for
small devices and preserves the object-oriented capabilities of the Java programming
language.

A simple approach to specifying a Java Card virtual machine would be to describe
the subset of the features of the Java virtual machine that must be supported to
allow for portability of source code across all Java Card technology enabled devices.
Combining that subset specification and the information in Java Virtual Machine
Specification, smart card manufacturers could construct their own Java Card
technology-based implementations (“Java Card implementations”). While that
approach is feasible, it has a serious drawback. The resultant platform would be
missing the important feature of binary portability of Java Card applets.

The standards that define the Java platform allow for binary portability of Java
programs across all Java platform implementations. This “write once, run
anywhere” quality of Java programs is perhaps the most significant feature of the
1-1

platform. Part of the motivation for the creation of the Java Card platform was to
bring just this kind of binary portability to the smart card industry. In a world with
hundreds of millions or perhaps even billions of smart cards with varying
processors and configurations, the costs of supporting multiple binary formats for
software distribution could be overwhelming.

This Virtual Machine Specification for the Java Card Platform, Version 2.2.2 is the key to
providing binary portability. One way of understanding what this specification does
is to compare it to its counterpart in the Java platform. The Java virtual machine
specification defines a Java virtual machine as an engine that loads Java class files
and executes them with a particular set of semantics. The class file is a central piece
of the Java architecture, and it is the standard for the binary compatibility of the Java
platform. The Virtual Machine Specification for the Java Card Platform, Version 2.2.2 also
defines a file format that is the standard for binary compatibility for the Java Card
platform: the CAP file format is the form in which software is loaded onto devices
which implement a Java Card virtual machine.

1.2 The Java Card Virtual Machine
The role of the Java Card virtual machine is best understood in the context of the
process for production and deployment of software for the Java Card platform.
There are several components that make up a Java Card system, including the Java
Card virtual machine, the Converter for the Java Card platform (“Java Card
Converter”), a terminal installation tool, and an installation program that runs on
the device, as shown in FIGURE 1-1 and FIGURE 1-2.
1-2 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

FIGURE 1-1 Java Card API Package Conversion

FIGURE 1-2 Java Card API Package Installation

Development of a Java Card applet begins as with any other Java program: a
developer writes one or more Java classes, and compiles the source code with a Java
compiler, producing one or more class files. The applet is run, tested and debugged
on a workstation using simulation tools to emulate the device environment. Then,
when an applet is ready to be downloaded to a device, the class files comprising the
applet are converted to a CAP (converted applet) file using a Java Card Converter.

Development System

CAP File

Export Files

Class Files

Converter

Terminal

CAP File

Installation
Tool

Installer
Virtual

Machine

Program Memory

Device
Chapter 1 Introduction 1-3

The Java Card Converter takes as input all of the class files which make up a Java
package. A package that contains one or more non-abstract subclasses, direct or
indirect, of the javacard.framework.Applet class is referred to as an applet package.
Otherwise the package is referred to as a library package. The Java Card Converter
also takes as input one or more export files. An export file contains name and link
information for the contents of other packages that are imported by the classes being
converted. When an applet or library package is converted, the converter can also
produce an export file for that package.

After conversion, the CAP file is copied to a card terminal, such as a desktop
computer with a card reader peripheral. Then an installation tool on the terminal
loads the CAP file and transmits it to the Java Card technology-enabled device. An
installation program on the device receives the contents of the CAP file and prepares
the applet to be run by the Java Card virtual machine. The virtual machine itself
need not load or manipulate CAP files; it need only execute the applet code found in
the CAP file that was loaded onto the device by the installation program.

The division of functionality between the Java Card virtual machine and the
installation program keeps both the virtual machine and the installation program
small. The installation program may be implemented as a Java program and
executed on top of the Java Card virtual machine. Since instructions for the Java
Card platform (“Java Card instructions”) are denser than typical machine code, this
may reduce the size of the installer. The modularity may enable different installers
to be used with a single Java Card virtual machine implementation.

1.3 Java Language Security
One of the fundamental features of the Java virtual machine is the strong security
provided in part by the class file verifier. Many devices that implement the Java
Card platform may be too small to support verification of CAP files on the device
itself. This consideration led to a design that enables verification on a device but
does not rely on it. The data in a CAP file that is needed only for verification is
packaged separately from the data needed for the actual execution of its applet. This
allows for flexibility in how security is managed in an implementation.

There are several options for providing language-level security on a Java Card
technology-enabled device. The conceptually simplest is to verify the contents of a
CAP file on the device as it is downloaded or after it is downloaded. This option
might only be feasible in the largest of devices. However, some subset of verification
might be possible even on smaller devices. Other options rely on some combination
of one or more of: physical security of the installation terminal, a cryptographically
enforced chain of trust from the source of the CAP file, and pre-download
verification of the contents of a CAP file.
1-4 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The Java Card platform standards say as little as possible about CAP file installation
and security policies. Since smart cards must serve as secure processors in many
different systems with different security requirements, it is necessary to allow a
great deal of flexibility to meet the needs of smart card issuers and users.

1.4 Java Card Runtime Environment
Security
The standard runtime environment for the Java Card platform is the Java Card
Runtime Environment. The Java Card RE consists of an implementation of the Java
Card virtual machine along with the Java Card API classes. While the Java Card
virtual machine has responsibility for ensuring Java language-level security, the Java
Card RE imposes additional runtime security requirements on devices that
implement the Java Card RE, which results in a need for additional features on the
Java Card virtual machine. Throughout this document, these additional features are
designated as Java Card RE-specific.

The basic runtime security feature imposed by the Java Card RE enforces isolation of
applets using what is called an applet firewall. The applet firewall prevents the
objects that were created by one applet from being used by another applet. This
prevents unauthorized access to both the fields and methods of class instances, as
well as the length and contents of arrays.

Isolation of applets is an important security feature, but it requires a mechanism to
allow applets to share objects in situations where there is a need to interoperate. The
Java Card RE allows such sharing using the concept of shareable interface objects.
These objects provide the only way an applet can make its objects available for use
by other applets. For more information about using shareable interface objects, see
the description of the interface javacard.framework.Shareable in the Application
Programming Interface, Java Card Platform, Version 2.2.2 specification. Some
descriptions of firewall-related features make reference to the Shareable interface.

The applet firewall also protects from unauthorized use the objects owned by the
Java Card RE itself. The Java Card RE can use mechanisms not reflected in the Java
Card API to make its objects available for use by applets. A full description of the
Java Card RE-related isolation and sharing features can be found in the Runtime
Environment Specification, Java Card Platform, Version 2.2.2.
Chapter 1 Introduction 1-5

1-6 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

CHAPTER 2

A Subset of the Java Virtual Machine

This chapter describes the subset of the Java virtual machine and language that is
supported in the Java Card platform, Version 2.2.2.

2.1 Why a Subset is Needed
It would be ideal if programs for smart cards could be written using all of the Java
programming language, but a full implementation of the Java virtual machine is far
too large to fit on even the most advanced resource-constrained devices available
today.

A typical resource-constrained device has on the order of 1.2K of RAM, 16K of non-
volatile memory (EEPROM or flash) and 32K-48K of ROM. The code for
implementing string manipulation, single and double-precision floating point
arithmetic, and thread management would be larger than the ROM space on such a
device. Even if it could be made to fit, there would be no space left over for class
libraries or application code. RAM resources are also very limited. The only
workable option is to implement Java Card technology as a subset of the Java
platform.

2.2 Java Card Platform Language Subset
Applets written for the Java Card platform are written in the Java programming
language. They are compiled using Java compilers. Java Card technology uses a
subset of the Java language, and familiarity with the Java platform is required to
understand the Java Card platform.
2-1

The items discussed in this section are not described to the level of a language
specification. For complete documentation on the Java programming language, see
The Java Language Specification.

2.2.1 Unsupported Items
The items listed in this section are elements of the Java programming language and
platform that are not supported by the Java Card platform.

2.2.1.1 Unsupported Features

Dynamic Class Loading

Dynamic class loading is not supported in the Java Card platform. An
implementation of the Java Card platform is not able to load classes dynamically.
Classes are either masked into the card during manufacturing or downloaded
through an installation process after the card has been issued. Programs executing
on the card may only refer to classes that already exist on the card, since there is no
way to download classes during the normal execution of application code.

Security Manager

Security management in the Java Card platform differs significantly from that of the
Java platform. In the Java platform, there is a Security Manager class
(java.lang.SecurityManager) responsible for implementing security features. In
the Java Card platform, language security policies are implemented by the virtual
machine. There is no Security Manager class that makes policy decisions on whether
to allow operations.

Finalization

Finalization is also not supported. finalize() will not be called automatically by
the Java Card virtual machine.

Threads

The Java Card virtual machine does not support multiple threads of control.
Programs for the Java Card platform (“Java Card programs”) cannot use class
Thread or any of the thread-related keywords in the Java programming language.
2-2 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Cloning

The Java Card platform does not support cloning of objects. Java Card API class
Object does not implement a clone method, and there is no Cloneable interface
provided.

Access Control in Java Packages

The Java Card platform language subset supports the package access control defined
in the Java language. However, the cases that are not supported are as follows.

■ If a class implements a method with package access visibility, a subclass cannot
override the method and change the access visibility of the method to protected
or public.

■ A public class cannot contain a public or protected field of type reference to a
package-visible class.

■ A public class cannot contain a public or protected method with a return type of
type reference to a package-visible class.

■ A public or protected method in a public class cannot contain a formal parameter
of type reference to a package-visible class.

■ A package-visible class that is extended by a public class cannot define any public
or protected methods or fields.

■ A package-visible interface that is implemented by a public class cannot define
any fields.

■ A package-visible interface cannot be extended by an interface with public access
visibility.

Typesafe Enums

The Java Card platform language subset does not support the enumerated type
facility and the keyword enum.

Enhanced for Loop

The Java Card platform language subset does not support the enhanced for loop
language construct. Support for the enhanced for loop construct requires support for
array indexing using the integer data type. The Java Card platform only supports
array indexing using the short data type.
Chapter 2 A Subset of the Java Virtual Machine 2-3

Varargs

The Java Card platform language subset does not support variable-length argument
lists. The variable-length argument construct requires the compiler to generate code
that creates a new array object each time a variable-length argument array method is
invoked, thereby causing implicit memory allocations in Java Card runtime memory
heap.

Runtime Visible Metadata (Annotations)

The Java Card platform does not support this language feature which lets you
introduce meta-data information into the runtime environment to be accessed
reflectively. The Java Card platform does not support reflection.

Assertions

The Java Card runtime does not provide runtime support for statements in the Java
programming language called assertions that are used to test assumptions about
program functionality.

2.2.1.2 Keywords

The following keywords indicate unsupported options related to native methods,
threads, floating point, memory management, and debugging.

2.2.1.3 Unsupported Types

The Java Card platform does not support types char, double, float and long. It
also does not support arrays of more than one dimension.

TABLE 2-1 Unsupported Keywords

native synchronized transient volatile

strictfp enum assert
2-4 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

2.2.1.4 Classes

In general, none of the Java programming language core API classes are supported
in the Java Card platform. Some classes from the java.lang package are supported
(see Section 2.2.2.4, “Classes” on page 2-7), but none of the rest are. For example,
classes that are not supported are String, Thread (and all thread-related classes),
wrapper classes such as Boolean and Integer, and class Class.

System

Class java.lang.System is not supported. Java Card technology supplies a class
javacard.framework.JCSystem, which provides an interface to system behavior.

2.2.2 Supported Items
If a language feature is not explicitly described as unsupported, it is part of the
supported subset. Notable supported features are described in this section.

2.2.2.1 Features

Packages

Software written for the Java Card platform follows the standard rules for the Java
platform packages. Java Card API classes are written as Java source files, which
include package designations. Package mechanisms are used to identify and control
access to classes, static fields and static methods. Except as noted in “Access Control
in Java Packages” (Section 2.2.1.1, “Unsupported Features” on page 2-2), packages in
the Java Card platform are used exactly the way they are in the Java platform.

Dynamic Object Creation

The Java Card platform programs supports dynamically created objects, both class
instances and arrays. This is done, as usual, by using the new operator. Objects are
allocated out of the heap.

A Java Card virtual machine will not necessarily garbage collect objects. Any object
allocated by a virtual machine may continue to exist and consume resources even
after it becomes unreachable. See Section 2.2.3.2, “Object Deletion Mechanism” on
page 2-8 for more information regarding support for an optional object deletion
mechanism.
Chapter 2 A Subset of the Java Virtual Machine 2-5

Virtual Methods

Since Java Card technology-based objects (“Java Card objects”) are Java
programming language objects, invoking virtual methods on objects in a program
written for the Java Card platform is exactly the same as in a program written for the
Java platform. Inheritance is supported, including the use of the super keyword.

Interfaces

Java Card API classes may define or implement interfaces as in the Java
programming language. Invoking methods on interface types works as expected.
Type checking and the instanceof operator also work correctly with interfaces.

Exceptions

Java Card programs may define, throw and catch exceptions, as in Java programs.
Class Throwable and its relevant subclasses are supported. Some Exception and
Error subclasses are omitted, since those exceptions cannot occur in the Java Card
platform. See Section 2.3.3, “Exceptions” on page 2-19 for specification of errors and
exceptions.

Generics

This Java language facility allows a type or method to operate on objects of various
types while providing compile-time type safety. It adds compile-time type safety and
eliminates the need for casting.

Static Import

This Java language facility lets you avoid importing an entire class simply to access
its static members or qualifying static members with class names each time it is
used.

Runtime Invisible Metadata (Annotations)

This language feature lets you avoid writing boilerplate code under many
circumstances by enabling tools to generate it from annotations in the source code.
The Java Card platform language subset supports the use of annotations which are
not visible at runtime. These annotations do not themselves use the runtime visible
meta-data annotation @Retention(RetentionPolicy.RUNTIME).
2-6 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

2.2.2.2 Keywords

The following keywords are supported. Their use is the same as in the Java
programming language.

2.2.2.3 Types

Java programming language types boolean, byte, short, and int are supported.
Objects (class instances and single-dimensional arrays) are also supported. Arrays
can contain the supported primitive data types, objects, and other arrays.

Some Java Card implementations might not support use of the int data type. (Refer
to Section 2.2.3.1, “Integer Data Type” on page 2-8).

2.2.2.4 Classes

Most of the classes in the java.lang package are not supported on the Java Card
platform. The following classes from java.lang are supported on the card in a
limited form.

Object

Java Card API classes descend from java.lang.Object, just as in the Java
programming language. Most of the methods of Object are not available in the Java
Card API, but the class itself exists to provide a root for the class hierarchy.

TABLE 2-2 Supported Keywords

abstract default if private this

boolean do implements protected throw

break else import public throws

byte extends instanceof return try

case final int short void

catch finally interface static while

class for new super

continue goto package switch
Chapter 2 A Subset of the Java Virtual Machine 2-7

Throwable

Class Throwable and its subclasses are supported. Most of the methods of
Throwable are not available in the Java Card API, but the class itself exists to
provide a common ancestor for all exceptions.

2.2.3 Optionally Supported Items
This section describes the optional features of the Java Card platform. An optional
feature is not required to be supported in a Java Card platform-compatible
implementation. However, if an implementation does include support for an
optional feature, it must be supported fully, and exactly as specified in this
document.

2.2.3.1 Integer Data Type

The int keyword and 32-bit integer data type need not be supported in a Java Card
implementation. A Java Card virtual machine that does not support the int data
type will reject programs which use the int data type or 32-bit intermediate values.

The result of an arithmetic expression produced by a Java Card virtual machine
must be equal to the result produced by a Java virtual machine, regardless of the
input values. A Java Card virtual machine that does not support the int data type
must reject expressions that could produce a different result.

2.2.3.2 Object Deletion Mechanism

Java Card technology, version 2.2.2 offers an optional, object deletion mechanism.
Applications designed to run on these implementations can use the facility by
invoking the appropriate API. See Application Programming Interface, Java Card
Platform, Version 2.2.2. But, the facility is best suited for updating large objects such
as certificates and keys atomically. Therefore, application programmers should
conserve on the allocation of objects.

2.2.4 Limitations of the Java Card Virtual Machine
The limitations of resource-constrained hardware prevent Java Card virtual
machines from supporting the full range of functionality of certain Java platform
features. The features in question are supported, but a particular virtual machine
may limit the range of operation to less than that of the Java platform.
2-8 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

To ensure a level of portability for application code, this section establishes a
minimum required level for partial support of these language features.

The limitations here are listed as maximums from the application programmer’s
perspective. Java packages that do not violate these maximum values can be
converted into Java Card technology-based CAP files (“Java Card CAP files”), and
will be portable across all Java Card implementations. From the Java Card virtual
machine implementer’s perspective, each maximum listed indicates a minimum
level of support that will allow portability of applets.

2.2.4.1 Packages

Package References

A package can reference at most 128 other packages.

Package Name

The fully qualified name of a package may contain a maximum of 255 characters.
The package name size is further limited if it contains one or more characters which,
when represented in UTF-8 format, requires multiple bytes.

2.2.4.2 Classes

Classes in a Package

A package can contain at most 255 classes and interfaces.

Interfaces

A class can implement at most 15 interfaces, including interfaces implemented by
superclasses.

An interface can inherit from at most 14 superinterfaces.
Chapter 2 A Subset of the Java Virtual Machine 2-9

Static Fields

A class in an applet package can have at most 256 public or protected static non-final
fields. A class in a library package can have at most 255 public or protected static
non-final fields. There is no limit on the number of static final fields (constants)
declared in a class.

Static Methods

A class in an applet package can have at most 256 public or protected static methods.
A class in a library package can have at most 255 public or protected static methods.

2.2.4.3 Objects

Methods

A class can implement a maximum of 128 public or protected instance methods, and
a maximum of 128 instance methods with package visibility. These limits include
inherited methods.

Class Instances

Class instances can contain a maximum of 255 fields, where an int data type is
counted as occupying two fields. These limits include inherited fields.

Arrays

Arrays can hold a maximum of 32767 components.

2.2.4.4 Methods

The maximum number of variables that can be used in a method is 255. This limit
includes local variables, method parameters, and, in the case of an instance method
invocation, a reference to the object on which the instance method is being invoked
(meaning, this). An int data type is counted as occupying two local variables.

A method can have at most 32767 Java Card virtual machine bytecodes. The number
of Java Card technology-based bytecodes (“Java Card bytecodes”) may differ from
the number of Java bytecodes in the Java virtual machine implementation of that
method.
2-10 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The maximum depth of an operand stack associated with a method is 255 16-bit
cells.

2.2.4.5 Switch Statements

The format of the Java Card virtual machine switch instructions limits switch
statements to a maximum of 65536 cases. This limit is far greater than the limit
imposed by the maximum size of methods (Section 2.2.4.4, “Methods” on page 2-10).

2.2.4.6 Class Initialization

The Java Card virtual machine contains limited support for class initialization
because there is no general mechanism for executing <clinit> methods. Support
for <clinit> methods is limited to the initialization of static field values with the
following constraints:

■ Static fields of applet packages may only be initialized to primitive compile-time
constant values, or arrays of primitive compile-time constants.

■ Static fields of user libraries may only be initialized to primitive compile-time
constant values.

■ Only static fields declared in the current class may be initialized in the <clinit>
method.

Primitive constant data types include boolean, byte, short, and int.

Given Java technology source files that adhere to these language-level constraints on
static field initialization, it is expected that reasonable Java compilers will:

■ Inline constants in the bytecodes that reference static final primitive fields that are
initialized in the declaration statement.

■ Produce only the following bytecodes:

■ load a value on the stack: iconst_[m1,0-5], [b|s]ipush, ldc, ldc_w,
aconst_null

■ create an array: newarray([byte|short|boolean|int])

■ duplicate items on the stack: dup

■ store values in arrays or static fields: [b|i|s]astore, putstatic

■ return from method: return
Chapter 2 A Subset of the Java Virtual Machine 2-11

2.2.5 Multiselectable Applets Restrictions
Applets that implement the javacard.framework.Multiselectable interface
are called multiselectable applets. For more details on multiselection, please see the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

All applets within a package shall be multiselectable, or none shall be.

2.2.6 Java Card Platform Remote Method Invocation
(RMI) Restrictions
This section defines the subset of the RMI system that is supported by Java Card
platform RMI (“Java Card RMI”).

2.2.6.1 Remote Classes and Remote Interfaces

A class is remote if it or any of its superclasses implements a remote interface.

A remote interface is an interface which satisfies the following requirements:

■ The interface name is java.rmi.Remote or the interface extends, directly or
indirectly, the interface java.rmi.Remote.

■ Each method declaration in the remote interface or its super-interfaces includes
the exception java.rmi.RemoteException (or one of its superclasses) in its
throws clause.

■ In a remote method declaration, if a remote object is declared as a return type, it
is declared as the remote interface, not the implementation class of that interface.

In addition, Java Card RMI imposes additional constraints on the definition of
remote methods. These constraints are as a result of the Java Card platform language
subset and other feature limitations. For more information, see Section 2.2.6.2,
“Access Control of Remote Interfaces” on page 2-12 and Section 2.2.6.3, “Parameters
and Return Values” on page 2-13.

2.2.6.2 Access Control of Remote Interfaces

The Java RMI system supports the package access control defined in the Java
language. However, Java Card RMI does not support package-visible remote
interfaces.
2-12 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

2.2.6.3 Parameters and Return Values

The parameters of a remote method must only include parameters of the following
types:

■ any primitive type supported by Java Card technology (boolean, byte, short,
int),

■ any single-dimension array type of an primitive type supported by Java Card
technology (boolean[], byte[], short[], int[]).

The return type of a remote method must only be one of the following types:

■ any primitive type supported by Java Card technology (boolean, byte, short,
int),

■ any single-dimension array type of an primitive type supported by Java Card
technology (boolean[], byte[], short[], int[]),

■ any remote interface type

■ type void

2.3 Java Card VM Subset
Java Card technology uses a subset of the Java virtual machine, and familiarity with
the Java platform is required to understand the Java Card virtual machine.

The items discussed in this section are not described to the level of a virtual machine
specification. For complete documentation on the Java virtual machine, refer to the
The Java Virtual Machine Specification.

2.3.1 class File Subset
The operation of the Java Card virtual machine can be defined in terms of standard
Java platform class files. Since the Java Card virtual machine supports only a subset
of the behavior of the Java virtual machine, it also supports only a subset of the
standard class file format.
Chapter 2 A Subset of the Java Virtual Machine 2-13

2.3.1.1 Not Supported in Class Files

Class access flags

In class_info and interface_info structures, the access flag ACC_ENUM is not
supported.

Field Descriptors

Field descriptors may not contain BaseType characters C, D, F or J. ArrayType
descriptors for arrays of more than one dimension may not be used.

Constant Pool

Constant pool table entries with the following tag values are not supported.

Fields

In field_info structures, the access flags ACC_VOLATILE, ACC_TRANSIENT and
ACC_ENUM are not supported.

Methods

In method_info structures, the access flags ACC_SYNCHRONIZED, ACC_STRICT,
ACC_NATIVE, and ACC_VARARGS are not supported.

TABLE 2-3 Unsupported Java Constant Pool Tags

Constant Type Value

CONSTANT_String 8

CONSTANT_Float 4

CONSTANT_Long 5

CONSTANT_Double 6
2-14 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

2.3.1.2 Supported in Class Files

ClassFile

All items in the ClassFile structure are supported.

Field Descriptors

Field descriptors may contain BaseType characters B, I, S and Z, as well as any
ObjectType. ArrayType descriptors for arrays of a single dimension may also be
used.

Method Descriptors

All forms of method descriptors are supported.

Constant pool

Constant pool table entry with the following tag values are supported.

Fields

In field_info structures, the supported access flags are ACC_PUBLIC,
ACC_PRIVATE, ACC_PROTECTED, ACC_STATIC and ACC_FINAL.

The remaining components of field_info structures are fully supported.

TABLE 2-4 Supported Java Constant Pool Tags

Constant Type Value

CONSTANT_Class 7

CONSTANT_Fieldref 9

CONSTANT_Methodref 10

CONSTANT_InterfaceMethodref 11

CONSTANT_Integer 3

CONSTANT_NameAndType 12

CONSTANT_Utf8 1
Chapter 2 A Subset of the Java Virtual Machine 2-15

Methods

In method_info structures, the supported access flags are ACC_PUBLIC,
ACC_PRIVATE, ACC_PROTECTED, ACC_STATIC, ACC_FINAL and ACC_ABSTRACT.

The remaining components of method_info structures are fully supported.

Attributes

The attribute_info structure is supported. The Code, ConstantValue,
Exceptions, LocalVariableTable, Synthetic, InnerClasses,
RuntimeInvisibleAnnotations, RuntimeInvisibleParameterAnnotations
and Deprecated attributes are supported.

2.3.2 Bytecode Subset
The following sections detail the bytecodes that are either supported or unsupported
in the Java Card platform. For more details, refer to Chapter 7, “Java Card Virtual
Machine Instruction Set”.
2-16 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

2.3.2.1 Unsupported Bytecodes

2.3.2.2 Supported Bytecodes

TABLE 2-5 Unsupported Bytecodes

lconst_<l> fconst_<f> dconst_<d> ldc2_w2

lload fload dload lload_<n>

fload_<n> dload_<n> laload faload

daload caload lstore fstore

dstore lstore_<n> fstore_<n> dstore_<n>

lastore fastore dastore castore

ladd fadd dadd lsub

fsub dsub lmul fmul

dmul ldiv fdiv ddiv

lrem frem drem lneg

fneg dneg lshl lshr

lushr land lor lxor

i2l i2f i2d l2i

l2f l2d f2i f2d

d2i d2l d2f i2c

lcmp fcmpl fcmpg dcmpl

dcmpg lreturn freturn dreturn

monitorenter monitorexit multianewarray goto_w

jsr_w

TABLE 2-6 Supported Bytecodes

nop aconst_null iconst_<i> bipush

sipush ldc ldc_w iload

aload iload_<n> aload_<n> iaload

aaload baload saload istore

astore istore_<n> astore_<n> iastore

aastore bastore sastore pop
Chapter 2 A Subset of the Java Virtual Machine 2-17

2.3.2.3 Static Restrictions on Bytecodes

A class file must conform to the following restrictions on the static form of
bytecodes.

ldc, ldc_w

The ldc and ldc_w bytecodes can only be used to load integer constants. The
constant pool entry at index must be a CONSTANT_Integer entry. If a program
contains an ldc or ldc_w instruction that is used to load an integer value less than
-32768 or greater than 32767, that program will require the optional int instructions
(Section 2.2.3.1, “Integer Data Type” on page 2-8).

lookupswitch

The value of the npairs operand must be less than 65536. This limit is far greater
than the limit imposed by the maximum size of methods (Section 2.2.4.4, “Methods”
on page 2-10). If a program contains a lookupswitch instruction that uses keys of
type int, that program will require the optional int instructions (Section 2.2.3.1,
“Integer Data Type” on page 2-8). Otherwise, key values must be in the range
-32768 to 32767.

pop2 dup dup_x1 dup_x2

dup2 dup2_x1 dup2_x2 swap

iadd isub imul idiv

irem ineg ior ishl

ishr iushr iand ixor

iinc i2b i2s if<cond>

ificmp_<cond> ifacmp_<cond> goto jsr

ret tableswitch lookupswitch ireturn

areturn return getstatic putstatic

getfield putfield invokevirtual invokespecial

invokestatic invokeinterface new newarray

anewarray arraylength athrow checkcast

instanceof wide ifnull ifnonnull

TABLE 2-6 Supported Bytecodes
2-18 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

tableswitch

The bytecode can contain at most 65536 cases. This limit is far greater than the limit
imposed by the maximum size of methods (Section 2.2.4.4, “Methods” on page 2-10).
If a program does not use the optional int instructions (Section 2.2.3.1, “Integer Data
Type” on page 2-8), the values of the high and low operands must both be at least -
32768 and at most 32767.

wide

The wide bytecode can only be used with an iinc instruction.

2.3.3 Exceptions
The Java Card platform provides full support for the Java platform’s exception
mechanism. Users can define, throw and catch exceptions just as in the Java
platform. The Java Card platform also makes use of the exceptions and errors
defined in The Java Language Specification. An updated list of the Java platform’s
exceptions is provided in the JDK™ software documentation.

Not all of the Java platform’s exceptions are supported in the Java Card platform.
Exceptions related to unsupported features are naturally not supported. Class loader
exceptions (the bulk of the checked exceptions) are not supported.

Note that some exceptions may be supported to the extent that their error conditions
are detected correctly, but classes for those exceptions will not necessarily be present
in the API.

The supported subset is described in the tables below.

2.3.3.1 Uncaught and Uncatchable Exceptions

In the Java platform, uncaught exceptions and errors will cause the virtual machine’s
current thread to exit. As the Java Card virtual machine is single-threaded, uncaught
exceptions or errors will cause the virtual machine to halt. Further response to
uncaught exceptions or errors after halting the virtual machine is an
implementation-specific policy, and is not mandated in this document.

Some error conditions are known to be unrecoverable at the time they are thrown.
Throwing a runtime exception or error that cannot be caught will also cause the
virtual machine to halt. As with uncaught exceptions, implementations may take
further responses after halting the virtual machine. Uncatchable exceptions and
Chapter 2 A Subset of the Java Virtual Machine 2-19

errors which are supported by the Java Card platform may not be reflected in the
Java Card API, though the Java Card platform will correctly detect the error
condition.

2.3.3.2 Checked Exceptions

TABLE 2-7 Support of Java Checked Exceptions

Exception Supported Not Supported

ClassNotFoundException X

CloneNotSupportedException X

IllegalAccessException X

InstantiationException X

InterruptedException X

NoSuchFieldException X

NoSuchMethodException X
2-20 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

2.3.3.3 Runtime Exceptions

2.3.3.4 Errors

TABLE 2-8 Support of Java Runtime Exceptions

Runtime Exception Supported Not Supported

ArithmeticException X

ArrayStoreException X

ClassCastException X

IllegalArgumentException X

IllegalThreadStateException X

NumberFormatException X

IllegalMonitorStateException X

IllegalStateException X

IndexOutOfBoundsException X

ArrayIndexOutOfBoundsException X

StringIndexOutOfBoundsException X

NegativeArraySizeException X

NullPointerException X

SecurityException X

TABLE 2-9 Support of Java Errors

Error Supported Not Supported

AssertionError X

LinkageError X

ClassCircularityError X

ClassFormatError X

ExceptionInInitializerError X

IncompatibleClassChangeError X

AbstractMethodError X

IllegalAccessError X

InstantiationError X
Chapter 2 A Subset of the Java Virtual Machine 2-21

NoSuchFieldError X

NoSuchMethodError X

NoClassDefFoundError X

UnsatisfiedLinkError X

VerifyError X

ThreadDeath X

VirtualMachineError X

InternalError X

OutOfMemoryError X

StackOverflowError X

UnknownError X

UnsupportedClassVersionError X

TABLE 2-9 Support of Java Errors

Error Supported Not Supported
2-22 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

CHAPTER 3

Structure of the Java Card Virtual
Machine

The specification of the Java Card virtual machine is in many ways quite similar to
that of the Java virtual machine. This similarity is of course intentional, as the design
of the Java Card virtual machine was based on that of the Java virtual machine.
Rather than reiterate all the details of this specification which are shared with that of
the Java virtual machine, this chapter will mainly refer to its counterpart in The Java
Virtual Machine Specification, 2nd Edition, providing new information only where the
Java Card virtual machine differs.

3.1 Data Types and Values
The Java Card virtual machine supports the same two kinds of data types as the Java
virtual machine: primitive types and reference types. Likewise, the same two kinds of
values are used: primitive values and reference values.

The primitive data types supported by the Java Card virtual machine are the numeric
types, the boolean type, and the returnAddress type. The numeric types consist only
of these types:

■ byte, whose values are 8-bit signed two’s complement integers
■ short, whose values are 16-bit signed two’s complement integers

Some Java Card virtual machine implementations may also support an additional
integral type:

■ int, whose values are 32-bit signed two’s complement integers

Support for the boolean type is identical to that in the Java virtual machine. The
value 1 is used to represent true and the value of 0 is used to represent false.

Support for reference types is identical to that in the Java virtual machine.
3-1

3.2 Words
The Java Card virtual machine is defined in terms of an abstract storage unit called a
word. This specification does not mandate the actual size in bits of a word on a
specific platform. A word is large enough to hold a value of type byte, short,
reference or returnAddress. Two words are large enough to hold a value of
type int.

The actual storage used for values in an implementation is platform-specific. There
is enough information present in the descriptor component of a CAP file to allow an
implementation to optimize the storage used for values in variables and on the
stack.

3.3 Runtime Data Areas
The Java Card virtual machine can support only a single thread of execution. Any
runtime data area in the Java virtual machine which is duplicated on a per-thread
basis will have only one global copy in the Java Card virtual machine.

The Java Card virtual machine's heap is not required to be garbage collected. Objects
allocated from the heap will not necessarily be reclaimed.

This specification does not include support for native methods, so there are no
native method stacks.

Otherwise, the runtime data areas are as documented for the Java virtual machine.

3.4 Contexts
Each applet running on a Java Card virtual machine is associated with an execution
context. The Java Card virtual machine uses the context of the current frame to
enforce security policies for inter-applet operations.

There is a one-to-one mapping between contexts and packages in which applets are
defined. An easy way to think of a context is as the runtime equivalent of a package,
since Java packages are compile-time constructs and have no direct representation at
runtime. As a consequence, all applet instances from the same package will share the
same context.
3-2 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The Java Card Runtime Environment also has its own context. Framework objects
execute in this Java Card RE context.

The context of the currently executing method is known as the current context. Every
object in a Java Card virtual machine is owned by a particular context. The owning
context is the context that was current when the object was created.

When a method in one context successfully invokes a method on an object in another
context, the Java Card virtual machine performs a context switch. Afterwards the
invoked method's context becomes the current context. When the invoked method
returns, the current context is switched back to the previous context.

3.5 Frames
Java Card virtual machine frames are very similar to those defined for the Java
virtual machine. Each frame has a set of local variables and an operand stack.
Frames also contain a reference to a constant pool, but since all constant pools for all
classes in a package are merged, the reference is to the constant pool for the current
class’ package.

Each frame also includes a reference to the context in which the current method is
executing.

3.6 Representation of Objects
The Java Card virtual machine does not mandate a particular internal structure for
objects or a particular layout of their contents. However, the core components in a
CAP file are defined assuming a default structure for certain runtime structures (such
as descriptions of classes), and a default layout for the contents of dynamically
allocated objects. Information from the descriptor component of the CAP file can be
used to format objects in whatever way an implementation requires.

3.7 Special Initialization Methods
The Java Card virtual machine supports instance initialization methods exactly as does
the Java virtual machine.
Chapter 3 Structure of the Java Card Virtual Machine 3-3

The Java Card virtual machine includes only limited support for class or interface
initialization methods. There is no general mechanism for executing
<clinit> methods on a Java Card virtual machine. Instead, a CAP file includes
information for initializing class data as defined in Section 2.2.4.6, “Class
Initialization” on page 2-11.

3.8 Exceptions
Exception support in the Java Card virtual machine is identical to support for
exceptions in the Java virtual machine.

3.9 Binary File Formats
This specification defines two binary file formats which enable platform-
independent development, distribution and execution of Java Card programs.

The CAP file format describes files that contain executable code and can be
downloaded and installed onto a Java Card technology-enabled device. A CAP file is
produced by a Java Card platform Converter tool, and contains a converted form of
an entire package of Java classes. This file format's relationship to the Java Card
virtual machine is analogous to the relationship of the class file format to the Java
virtual machine.

The export file format describes files that contain the public linking information of
Java Card API packages. A package’s export file is used when converting client
packages of that package.

3.10 Instruction Set Summary
The Java Card virtual machine instruction set is quite similar to the Java virtual
machine instruction set. Individual instructions consist of a one-byte opcode and zero
or more operands. The pseudo-code for the Java Card virtual machine's instruction
fetch-decode-execute loop is the same. Multi-byte operand data is also encoded in
big-endian order.
3-4 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

There are a number of ways in which the Java Card virtual machine instruction set
diverges from that of the Java virtual machine. Most of the differences are due to the
Java Card virtual machine's more limited support for data types. Another source of
divergence is that the Java Card virtual machine is intended to run on 8-bit and 16-
bit architectures, whereas the Java virtual machine was designed for a 32-bit
architecture. The rest of the differences are all oriented in one way or another
toward optimizing the size or performance of either the Java Card virtual machine
or Java Card programs. These changes include inlining constant pool data directly in
instruction opcodes or operands, adding multiple versions of a particular instruction
to deal with different datatypes, and creating composite instructions for operations
on the current object.

3.10.1 Types and the Java Card Virtual Machine
The Java Card virtual machine supports only a subset of the types supported by the
Java virtual machine. This subset is described in Chapter 2. Type support is reflected
in the instruction set, as instructions encode the data types on which they operate.

Given that the Java Card virtual machine supports fewer types than the Java virtual
machine, there is an opportunity for better support for smaller data types. Lack of
support for large numeric data types frees up space in the instruction set. This extra
instruction space has been used to directly support arithmetic operations on the
short data type.

Some of the extra instruction space has also been used to optimize common
operations. Type information is directly encoded in field access instructions, rather
than being obtained from an entry in the constant pool.

TABLE 3-1 summarizes the type support in the instruction set of the Java Card virtual
machine. Only instructions that exist for multiple types are listed. Wide and
composite forms of instructions are not listed either. A specific instruction, with type
information, is built by replacing the T in the instruction template in the opcode
column by the letter representing the type in the type column. If the type column for
some instruction is blank, then no instruction exists supporting that operation on
that type. For instance, there is a load instruction for type short, sload, but there is
no load instruction for type byte.

TABLE 3-1 Type Support in the Java Card Virtual Machine Instruction Set

opcode byte short int reference

Tspush bspush sspush

Tipush bipush sipush iipush

Tconst sconst iconst aconst

Tload sload iload aload
Chapter 3 Structure of the Java Card Virtual Machine 3-5

Tstore sstore istore astore

Tinc sinc iinc

Taload baload saload iaload aaload

Tastore bastore sastore iastore aastore

Tadd sadd iadd

Tsub ssub isub

Tmul smul imul

Tdiv sdiv idiv

Trem srem irem

Tneg sneg ineg

Tshl sshl ishl

Tshr sshr ishr

Tushr sushr iushr

Tand sand iand

Tor sor ior

Txor sxor ixor

s2T s2b s2i

i2T i2b i2s

Tcmp icmp

if_TcmpOP if_scmpOP if_acmpOP

Tlookupswitch slookupswitch ilookupswitch

Ttableswitch stableswitch itableswitch

Treturn sreturn ireturn areturn

getstatic_T getstatic_b getstatic_s getstatic_i getstatic_a

putstatic_T putstatic_b putstatic_s putstatic_i putstatic_a

getfield_T getfield_b getfield_s getfield_i getfield_a

putfield_T putfield_b putfield_s putfield_i putfield_a

TABLE 3-1 Type Support in the Java Card Virtual Machine Instruction Set

opcode byte short int reference
3-6 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The mapping between Java storage types and Java Card virtual machine
computational types is summarized in TABLE 3-2.

Chapter 7 describes the Java Card virtual machine instruction set in detail.

TABLE 3-2 Storage Types and Computational Types

Java (Storage) Type Size in Bits Computational Type

byte 8 short

short 16 short

int 32 int
Chapter 3 Structure of the Java Card Virtual Machine 3-7

3-8 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

CHAPTER 4

Binary Representation

This chapter presents information about the binary representation of Java Card
programs. Java Card technology-based binaries (“Java Card binaries”) are usually
contained in files, therefore this chapter addresses binary representation in terms of
this common case.

Several topics relating to binary representation are covered. The first section
describes the basic organization of program representation in export and CAP files,
as well as the use of the Java™ Archive (JAR) file containers. The second section
covers how Java Card applets and packages are named using unique identifiers. The
third section presents the scheme used for naming and linking items within Java
Card API packages. The fourth and fifth sections describe the constraints for upward
compatibility between different versions of a Java Card technology-based binary
(“Java Card binary”) program file, and versions assigned based upon that
compatibility.

4.1 Java Card Platform File Formats
Java programs are represented in compiled, binary form as class files. Java class files
are used not only to execute programs on a Java virtual machine, but also to provide
type and name information to a Java compiler. In the latter role, a class file is
essentially used to document the API of its class to client code. That client code is
compiled into its own class file, including symbolic references used to dynamically
link to the API class at runtime.

Java Card technology uses a different strategy for binary representation of
programs. Executable binaries and interface binaries are represented in two separate
files. These files are respectively called CAP files (for converted applet) and export
files.
4-1

4.1.1 Export File Format
Export files are not used directly on a device that implements a Java Card virtual
machine. However, the information in an export file is critical to the operation of the
virtual machine on a device. An export file can be produced by a Java Card
converter when a package is converted. This package’s export file can be used later
to convert another package that imports classes from the first package. Information
in the export file is included in the CAP file of the second package, then is used on
the device to link the contents of the second package to items imported from the first
package.

A Java Card technology-based export file (“Java Card export file”) contains the
public interface information for an entire package of classes. This means that an
export file only contains information about the public API of a package, and does
not include information used to link classes within a package.

The name of an export file is the last portion of the package specification followed
by the extension ‘.exp’. For example, the name of the export file of the
javacard.framework package must be framework.exp. Operating systems that
impose limitations on file name lengths may transform an export file’s name
according to their own conventions.

For a complete description of the Java Card export file format, see Chapter 5, “The
Export File Format”.

4.1.2 CAP File Format
A Java Card CAP file contains a binary representation of a package of classes that
can be installed on a device and used to execute the package’s classes on a Java Card
virtual machine.

A CAP file is produced by a Java Card converter when a package of classes is
converted. A CAP file consists of a set of components, each of which describes a
different aspect of the contents. The set of components in a CAP file can vary,
depending on whether the file contains a library or applet definition(s).

For a complete description of the Java Card CAP file format, see Chapter 6, “The
CAP File Format”.

4.1.3 JAR File Container
The JAR file format is used as the container format for CAP files. What this
specification calls a “CAP file” is just a JAR file that contains the required set of CAP
components (see Chapter 6, “The CAP File Format”).
4-2 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

CAP file components are stored as files in a JAR file. Each CAP file component is
located in a subdirectory called javacard that is in a directory representing the
package. For example, the CAP file components of the package com.sun.framework
are located in the directory com/sun/framework/javacard.

An export file may also be contained in a JAR file, whether that JAR file contains
CAP file components or not. If an export file is included, it must be located in the
same directory as the components for that package would be.

The name of a JAR file containing CAP file components is not defined as part of this
specification. Other files, including CAP file components for another package, may
also reside in a JAR file that contains CAP file components.

4.2 AID-based Naming
This section describes the mechanism used for naming applets and packages in Java
Card CAP files and export files, and custom components in Java Card CAP files.
Java class files use Unicode strings to name Java packages. As the Java Card
platform does not include support for strings, an alternative mechanism for naming
is provided.

ISO 7816 is a multipart standard that describes a broad range of technology for
building smart card systems. ISO 7816-5 defines the AID (application identifier) data
format to be used for unique identification of card applications (and certain kinds of
files in card file systems). The Java Card platform uses the AID data format to
identify applets and packages. AIDs are administered by the International Standards
Organization (ISO), so they can be used as unique identifiers.

4.2.1 The AID Format
This section presents a minimal description of the AID data format used in Java
Card technology. For complete details, refer to ISO 7816-5, AID Registration
Category ‘D’ format.

The AID format used by the Java Card platform is an array of bytes that can be
interpreted as two distinct pieces, as shown in TABLE 4-1. The first piece is a 5-byte
value known as a RID (resource identifier). The second piece is a variable length
value known as a PIX (proprietary identifier extension). A PIX can be from 0 to 11
bytes in length. Thus an AID can be from 5 to 16 bytes in total length.
Chapter 4 Binary Representation 4-3

TABLE 4-1 AID Format

ISO controls the assignment of RIDs to companies, with each company obtaining its
own unique RID from the ISO. Companies manage assignment of PIXs for AIDs
using their own RIDs.

4.2.2 AID Usage
In the Java platform, packages are uniquely identified using Unicode strings and a
naming scheme based on internet domain names. In the Java Card platform,
packages and applets are identified using AIDs.

Any package that is represented in an export file must be assigned a unique AID.
The AID for a package is constructed from the concatenation of the company’s RID
and a PIX for that package. This AID corresponds to the string name for the package,
as shown in FIGURE 4-1.

FIGURE 4-1 Mapping Package Identifiers To AIDs

Each applet installed on a Java Card technology enabled device must also have a
unique AID. This AID is constructed similarly to a package AID. It is a
concatenation of the applet provider’s RID and PIX for that applet. An applet AID
must not have the same value as the AID of any package or the AID of any other
applet. The RID of each applet in a package must be the same as the RID of the
package.

Custom components defined in a CAP file are also identified using AIDs. Like AIDs
for applets and packages, component AIDs are formed by concatenating a RID and a
PIX.

RID (5 bytes) PIX (0-11 bytes)

com.sun.card.test;

Sun’s RID com.sun.card.test PIX

package
4-4 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

4.3 Token-based Linking
This section describes a scheme that allows downloaded software to be linked
against APIs on a Java Card technology enabled device. The scheme represents
referenced items as opaque tokens, instead of Unicode strings as are used in Java
class files. The two basic requirements of this linking scheme are that it allows
linking on the device, and that it does not require internal implementation details of
APIs to be revealed to clients of those APIs. Secondary requirements are that the
scheme be efficient in terms of resource use on the device, and have acceptable
performance for linking. And of course, it must preserve the semantics of the Java
language.

4.3.1 Externally Visible Items
Classes (including Interfaces) in Java packages may be declared with public or
package visibility. A class’s methods and fields may be declared with public,
protected, package or private visibility. For purposes of this document, we define
public classes, public or protected fields, and public or protected methods to be
externally visible from the package.

Each externally visible item must have a token associated with it to enable references
from other packages to the item to be resolved on a device. There are six kinds of
items in a package that require external identification.

■ Classes (including Interfaces)
■ Static Fields
■ Static Methods
■ Instance Fields
■ Virtual Methods
■ Interface Methods

4.3.2 Private Tokens
Items that are not externally visible are internally visible. Internally visible items are
not described in a package’s export file, but some such items use private tokens to
represent internal references. External references are represented by public tokens.
There are three kinds of items that can be assigned private tokens.

■ Instance Fields
■ Virtual Methods
■ Packages
Chapter 4 Binary Representation 4-5

4.3.3 The Export File and Conversion
An export file contains entries for externally visible items in the package. Each entry
holds the item’s name and its token. Some entries may include additional
information as well. For detailed information on the export file format, see
Chapter 5, “The Export File Format”.

The export file is used to map names for imported items to tokens during package
conversion. The Java Card converter uses these tokens to represent references to
items in an imported package.

For example, during the conversion of the class files of applet A, the export file of
javacard.framework is used to find tokens for items in the API that are used by the
applet. Applet A creates a new instance of framework class OwnerPIN. The
framework export file contains an entry for javacard.framework.OwnerPIN that
holds the token for this class. The converter places this token in the CAP file’s
constant pool to represent an unresolved reference to the class. The token value is
later used to resolve the reference on a device.

4.3.4 References – External and Internal
In the context of a CAP file, references to items are made indirectly through a
package’s constant pool. References to items in other packages are called external,
and are represented in terms of tokens. References to items in the same CAP file are
called internal, and are represented either in terms of tokens, or in a different
internal format.

An external reference to a class is composed of a package token and a class token.
Together those tokens specify a certain class in a certain package. An internal
reference to a class is a 15-bit value that is a pointer to the class structure’s location
within the CAP file.

An external reference to a static class member, either a field or method, consists of a
package token, a class token, and a token for the static field or static method. An
internal reference to a static class member is a 16-bit value that is a pointer to the
item’s location in the CAP file.

References to instance fields, virtual methods and interface methods consist of a
class reference and a token of the appropriate type. The class reference determines
whether the reference is external or internal.
4-6 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

4.3.5 Installation and Linking
External references in a CAP file can be resolved on a device from token form into
the internal representation used by the virtual machine.

A token can only be resolved in the context of the package that defines it. Just as the
export file maps from a package’s externally visible names to tokens, there is a set of
link information for each package on the device that maps from tokens to resolved
references.

4.3.6 Token Assignment
Tokens for an API are assigned by the API’s owner and published in the package
export file(s) for that API. Since the name-to-token mappings are published, an API
owner may choose any order for tokens (subject to the constraints listed below).

A particular device platform can resolve tokens into whatever internal
representation is most useful for that implementation of a Java Card virtual
machine. Some tokens may be resolved to indices. For example, an instance field
token may be resolved to an index into a class instance’s fields. In such cases, the
token value is distinct from and unrelated to the value of the resolved index.

4.3.7 Token Details
Each kind of item in a package has its own independent scope for tokens of that
kind. The token range and assignment rules for each kind are listed in TABLE 4-2.

TABLE 4-2 Token Range, Type and Scope

Token Type Range Type Scope

Package 0 - 127 Private Package

Class 0 - 254 Public Package

Static Field 0 - 255 Public Class

Static Method 0 - 255 Public Class

Instance Field 0 - 255 Public or Private Class

Virtual Method 0 - 127 Public or Private Class Hierarchy

Interface Method 0 - 127 Public Class
Chapter 4 Binary Representation 4-7

4.3.7.1 Package

All package references from within a CAP file are assigned private package tokens.
Package token values must be in the range from 0 to 127, inclusive. The tokens for all
the packages referenced from classes in a CAP file are numbered consecutively
starting at zero. The ordering of package tokens is not specified.

4.3.7.2 Classes and Interfaces

All externally visible classes and interfaces in a package are assigned public class
tokens. Class token values must be in the range from 0 to 254, inclusive. The tokens
for all the public classes and interfaces in a package are numbered consecutively
starting at zero. The ordering of class tokens is not specified.

Package-visible classes and interfaces are not assigned tokens.

4.3.7.3 Static Fields

All externally visible static fields in a package are assigned public static field tokens.
The tokens for all externally visible static fields in a class are numbered
consecutively starting at zero. Static fields token values must be in the range from 0
to 255, inclusive. The ordering of static field tokens is not specified.

Package-visible and private static fields are not assigned tokens. In addition, no
tokens are assigned for final static fields that are initialized to primitive, compile-
time constants, as these fields are never represented as fields in CAP files.

4.3.7.4 Static Methods and Constructors

All externally visible static methods and constructors in a package are assigned
public static method tokens. Constructors are included in this category because they
are statically bound. Static method token values must be in the range from 0 to 255,
inclusive. The tokens for all the externally visible static methods and constructors in
a class are numbered consecutively starting at zero. The ordering of static method
tokens is not specified.

Package-visible and private static methods as well as package-visible and private
constructors are not assigned tokens.
4-8 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

4.3.7.5 Instance Fields

All instance fields defined in a package are assigned either public or private instance
field tokens. The scope of a set of instance field tokens is limited to the class that
declares the instance fields, not including the fields declared by superclasses of that
class.

Instance field token values must be in the range from 0 to 255, inclusive. Public and
private tokens for instance fields are assigned from the same namespace. The tokens
for all the instance fields in a class are numbered consecutively starting at zero,
except that the token after an int field is skipped and the token for the following
field is numbered two greater than the token of the int field.

Within a class, tokens for externally visible fields must be numbered less than the
tokens for package and private fields. For public tokens, the tokens for reference
type fields must be numbered greater than the tokens for primitive type fields. For
private tokens, the tokens for reference type fields must be numbered less than the
tokens for primitive type fields. Beyond that, the ordering of instance field tokens in
a class is not specified.

4.3.7.6 Virtual Methods

Virtual methods are instance methods that are resolved dynamically. The set
includes all public, protected and package-visible instance methods. Private instance
methods and all constructors are not virtual methods, but instead are resolved
statically during compilation.

TABLE 4-3 Tokens For Instance Fields

Visibility Category Type Token Value

public and
protected fields
(public tokens)

primitive boolean 0

byte 1

short 2

reference byte[] 3

Applet 4

package and
private fields
(private tokens)

reference short[] 5

Object 6

primitive int 7

short 9
Chapter 4 Binary Representation 4-9

All virtual methods defined in a package are assigned either public or private virtual
method tokens. Virtual method token values must be in the range from 0 to 127,
inclusive. Public and private tokens for virtual methods are assigned from different
namespaces. The high bit of the byte containing a virtual method token is set to one
if the token is a private token.

Public tokens for the externally visible (public or protected) introduced virtual
methods in a class are numbered consecutively starting at one greater than the
highest numbered public virtual method token of the class’s superclass. If a method
overrides a method implemented in the class’s superclass, that method is assigned
the same token number as the method in the superclass. The high bit of the byte
containing a public virtual method token is always set to zero, to indicate it is a
public token. The ordering of public virtual method tokens in a class is not specified.

Private virtual method tokens are assigned to package-visible virtual methods. They
are assigned differently from public virtual method tokens. If a class and its
superclass are defined in the same package, the tokens for the package-visible
introduced virtual methods in that class are numbered consecutively starting at one
greater than the highest numbered private virtual method token of the class’s
superclass. If the class and its superclass are defined in different packages, the
tokens for the package-visible introduced virtual methods in that class are numbered
consecutively starting at zero. If a method overrides a method implemented in the
class’s superclass, that method uses the same token number as the method in the
superclass. The definition of the Java programming language specifies that
overriding a package-visible virtual method is only possible if both the class and its
superclass are defined in the same package. The high bit of the byte containing a
virtual method token is always set to one, to indicate it is a private token. The
ordering of private virtual method tokens in a class is not specified.

4.3.7.7 Interface Methods

All interface methods defined in a package are assigned public interface method
tokens, as interface methods are always public. Interface methods tokens values
must be in the range from 0 to 127, inclusive. The tokens for all the interface
methods defined in or inherited by an interface are numbered consecutively starting
at zero. The token value for an interface method in a given interface is unrelated to
the token values of that same method in any of the interface’s superinterfaces. Each
interface includes its own token values for all the methods inherited from super-
interfaces as well as its defined methods. The high bit of the byte containing an
interface method token is always set to zero, to indicate it is a public token. The
ordering of interface method tokens is not specified.
4-10 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

4.4 Binary Compatibility
In the Java programming language the granularity of binary compatibility can be
between classes since binaries are stored in individual class files. In Java Card
systems Java packages are processed as a single unit, and therefore the granularity
of binary compatibility is between packages. In Java Card systems the binary of a
package is represented in a CAP file, and the API of a package is represented in an
export file.

In a Java Card system, a change to a type in a Java package results in a new CAP file.
A new CAP file is binary compatible with (equivalently, does not break
compatibility with) a preexisting CAP file if another CAP file converted using the
export file of the preexisting CAP file can link with the new CAP file without errors.

shows an example of binary compatible CAP files, p1 and p1’. The preconditions for
the example are: the package p1 is converted to create the p1 CAP file and p1 export
file, and package p1 is modified and converted to create the p1’ CAP file. Package p2
imports package p1, and therefore when the p2 CAP file is created the export file of
p1 is used. In the example, p2 is converted using the original p1 export file. Because
p1’ is binary compatible with p1, p2 may be linked with either the p1 CAP file or the
p1’ CAP file.

FIGURE 4-2 Binary Compatibility Example

Any modification that causes binary incompatibility in the Java programming
language also causes binary incompatibility in Java Card systems. These
modifications are described as causing a potential error in The Java Language

Convert with P2
CAP File

P1’
CAP File

P1
CAP File

P1
Export File

Link with (either)

Compatible Binaries
Chapter 4 Binary Representation 4-11

Specification. Any modification that does not cause binary incompatibility in the
Java programming language does not cause binary incompatibility in a Java Card
system, except under the following conditions:

■ The value of a token assigned to an element in the API of a package is changed.

■ The value of an externally visible final static field (compile-time constant) is
changed.

■ An externally visible virtual method that does not override a preexisting method
is added to a non-final public class.

■ An externally visible interface method that does not override a preexisting
method is added to a public interface.

Tokens are used to resolve references to imported elements of a package. If a token
value is modified, a linker on a device is unable to associate the new token value
with the previous token value of the element, and therefore is unable to resolve the
reference correctly.

Compile-time constants are not stored as fields in CAP files. Instead their values are
recorded in export files and placed inline in the bytecodes in CAP files. These values
are said to be pre-linked in a CAP file of a package that imports those constants.
During execution, information is not available to determine whether the value of an
inlined constant is the same as the value defined by the binary of the imported
package.

As described above, tokens assigned to public and protected virtual methods are
scoped to the hierarchy of a class. Tokens assigned to public and protected virtual
methods introduced in a subclass have values starting at one greater than the
maximum token value assigned in a superclass. If a new, non-override, public or
protected virtual method is introduced in a superclass it is assigned a token value
that would otherwise have been assigned in a subclass. Therefore, two unique
virtual methods could be assigned the same token value within the same class
hierarchy, making resolution of a reference to one of the methods ambiguous.

The addition of an externally visible, non-override method to a public interface is a
binary incompatible change. It allows classes which are not themselves abstract to
contain an abstract method. For example, consider the case of an interface I
implemented by a class C that is not abstract, where I and C reside in different
packages. If a new method is added to I, creating I’, then C cannot link with the new
version of I’ because this would result in the class C containing an abstract method
without the class C being abstract. The fact that C can not link with I’ means that I
and I’ are not binary compatible.
4-12 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

4.5 Package Versions
Each implementation of a package in a Java Card system is assigned a pair of major
and minor version numbers. These version numbers are used to indicate binary
compatibility or incompatibility between successive implementations of a package.

4.5.1 Assigning
The major and minor versions of a package are assigned by the package provider. It
is recommended that the initial implementation of a package be assigned a major
version of 1 and a minor version of 0. However, any values may be chosen. It is also
recommended that when either a major or a minor version is incremented, it is
incremented exactly by 1.

A major version must be changed when a new implementation of a package is not
binary compatible with the previous implementation. The value of the new major
version must be greater than the major version of the previous implementation.
When a major version is changed, the associated minor version must be assigned the
value of 0.

When a new implementation of a package is binary compatible with the previous
implementation, it must be assigned a major version equal to the major version of
the previous implementation. The minor version assigned to the new
implementation must be greater than the minor version of the previous
implementation.

4.5.2 Linking
Both an export file and a CAP file contain the major and minor version numbers of
the package described. When a CAP file is installed on a Java Card technology-
enabled device a resident image of the package is created, and the major and minor
version numbers are recorded as part of that image. When an export file is used
during preparation of a CAP file, the version numbers indicated in the export file are
recorded in the CAP file.

During installation, references from the package of the CAP file being installed to an
imported package can be resolved only when the version numbers indicated in the
export file used during preparation of the CAP file are compatible with the version
numbers of the resident image. They are compatible when the major version
numbers are equal and the minor version of the export file is less than or equal to
the minor version of the resident image.
Chapter 4 Binary Representation 4-13

4-14 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

CHAPTER 5

The Export File Format

This chapter describes the export file format. Compliant Java Card Converters must
be capable of producing and consuming all export files that conform to the
specification provided in this chapter.

An export file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are
constructed by reading in two and four consecutive 8-bit bytes, respectively.
Multibyte data items are always stored in big-endian order, where the high-order
bytes come first.

This chapter defines its own set of data types representing Java Card export file
data: the types u1, u2, and u4 represent an unsigned one-, two-, and four-byte
quantities, respectively.

The Java Card export file format is presented using pseudo structures written in a C-
like structure notation. To avoid confusion with the fields of Java Card virtual
machine classes and class instances, the contents of the structures describing the Java
Card export file format are referred to as items. Unlike the fields of a C structure,
successive items are stored in the Java Card platform file sequentially, without
padding or alignment.

Variable-sized tables, consisting of variable-sized items, are used in several export
file structures. Although we will use C-like array syntax to refer to table items, the
fact that tables are streams of varying-sized structures means that it is not possible to
directly translate a table index into a byte offset into the table.

In a data structure that is referred to as an array, the elements are equal in size.
5-1

5.1 Export File Name
As described in Section 4.1.1, “Export File Format” on page 4-2, the name of a export
file must be the last portion of the package specification followed by the extension
‘.exp’. For example, the name of the export file of the javacard.framework
package must be framework.exp. Operating systems that impose limitations on file
name lengths may transform an export file’s name according to its conventions.

5.2 Containment in a JAR File
As described in Section 4.1.3, “JAR File Container” on page 4-2, Java Card CAP files
are contained in a JAR file. If an export file is also stored in a JAR file, it must also be
located in a directory called javacard that is a subdirectory of the package’s
directory. For example, the framework.exp file would be located in the
subdirectory javacard/framework/javacard.

5.3 Ownership
An export file is owned by the entity that owns the package it represents. The
owner of a package defines the API of that package, and may or may not provide all
implementations of that package. All implementations, however, must conform to
the definition provided in the export file provided by the owner.

A particular example of export file ownership is the Java Card API packages. Sun
Microsystems, Inc. defines these packages. Sun Microsystems, Inc. also provides the
export files for these packages. All implementations of the Java Card API packages
must conform to the definitions provided by Sun Microsystems, Inc., and comply
with the token assignments provided in these export files.
5-2 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

5.4 Hierarchies Represented
Classes and interfaces represented in an export file include public elements defined
within their respective hierarchies. For example, instead of indicating the immediate
superclass or superinterface, all public superclasses or superinterfaces are listed.
This design concept is applied not only to superclasses or superinterfaces, but also to
virtual methods and implemented interfaces.

5.5 Export File
An export file is defined by the following structure:

The items in the ExportFile structure are as follows:

magic

The magic item contains the magic number identifying the ExportFile format;
it has the value 0x00FACADE.

minor_version, major_version

The minor_version and major_version items are the minor and major
version numbers of this export file. Together, a major and a minor version
number determine the version of the export file format. If an export file has the
major version number of M and minor version number of m, the version of the
export file’s format is M.m.

A change in the major version number indicates a major incompatibility change,
one that requires a fundamentally different Java Card virtual machine. A Java
Card virtual machine is not required to support export files with different major
version numbers. A Java Card virtual machine is required to support export files
having a given major version number and all valid minor version numbers in the
range 0 through some particular minor_version where a valid minor version
number is a minor version number that has been defined in a version of the Java
Card virtual machine specification.

ExportFile {
u4 magic
u1 minor_version
u1 major_version
u2 constant_pool_count
cp_info constant_pool[constant_pool_count]
u2 this_package
u1 export_class_count
class_info classes[export_class_count]

}

Chapter 5 The Export File Format 5-3

In this specification, the major version of the export file format has the value 2
and the minor version has the value 2. Only Sun Microsystems, Inc. may define
the meaning and values of new export file format versions.

constant_pool_count

The constant_pool_count item is a non-zero, positive value that indicates the
number of constants in the constant pool.

constant_pool[]

The constant_pool is a table of variable-length structures representing various
string constants, class names, field names and other constants referred to within
the ExportFile structure.

Each of the constant_pool table entries, including entry zero, is a variable-
length structure whose format is indicated by its first “tag” byte.

There are no ordering constrains on entries in the constant_pool table.

this_package

The value of this_package must be a valid index into the constant_pool
table. The constant_pool entry at that index must be a
CONSTANT_Package_info (Section 5.6.1, “CONSTANT_Package” on page 5-5)
structure representing the package defined by this ExportFile.

export_class_count

The value of the export_class_count item gives the number of elements in the
classes table.

classes[]

Each value of the classes table is a variable-length class_info structure
(Section 5.7, “Classes and Interfaces” on page 5-8) giving the description of a
publicly accessible class or interface declared in this package. If the ACC_LIBRARY
flag item in the CONSTANT_Package_info (Section 5.6.1,
“CONSTANT_Package” on page 5-5) structure indicated by the this_package item
is set, the classes table has an entry for each public class and interface declared in
this package. If the ACC_LIBRARY flag item is not set, the classes table has an
entry for each public shareable interface declared in this package.1

5.6 Constant Pool
All constant_pool table entries have the following general format:

1. This restriction of exporting only shareable interfaces in non-library packages is imposed by the firewall
defined in the Runtime Environment Specification, Java Card Platform, Version 2.2.2.
5-4 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Each item in the constant_pool must begin with a 1-byte tag indicating the kind
of cp_info entry. The content of the info array varies with the value of tag. The
valid tags and their values are listed in TABLE 5-1. Each tag byte must be followed by
two or more bytes giving information about the specific constant. The format of the
additional information varies with the tag value.

5.6.1 CONSTANT_Package
The CONSTANT_Package_info structure is used to represent a package:

The items of the CONSTANT_Package_info structure are the following:

tag

The tag item has the value of CONSTANT_Package (13).

flags

The flags item is a mask of modifiers that apply to this package. The flags
modifiers are shown in the following table.

cp_info {
u1 tag
u1 info[]

}

TABLE 5-1 Export File Constant Pool Tags

Constant Type Value

CONSTANT_Package 13

CONSTANT_Classref 7

CONSTANT_Integer 3

CONSTANT_Utf8 1

CONSTANT_Package_info {
u1 tag
u1 flags
u2 name_index
u1 minor_version
u1 major_version
u1 aid_length
u1 aid[aid_length]

}

TABLE 5-2 Export File Package Flags

Flags Value

ACC_LIBRARY 0x01
Chapter 5 The Export File Format 5-5

The ACC_LIBRARY flag has the value of one if this package does not define and
declare any applets. In this case it is called a library package. Otherwise
ACC_LIBRARY has the value of zero.

If the package is not a library package this export file can only contain shareable
interfaces.1 A shareable interface is either the
javacard.framework.Shareable interface or an interface that extends the
javacard.framework.Shareable interface.

All other flag values are reserved. Their values must be zero.

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (Section 5.6.4, “CONSTANT_Utf8” on page 5-7) structure
representing a valid Java package name.

As in Java class files, ASCII periods (‘.’) that normally separate the identifiers in a
package name are replaced by ASCII forward slashes (‘/’). For example, the
package name javacard.framework is represented in a CONSTANT_Utf8_info
structure as javacard/framework.

minor_version, major_version

The minor_version and major_version items are the minor and major version
numbers of this package. These values uniquely identify the particular
implementation of this package and indicate the binary compatibility between
packages. See Section 4.5, “Package Versions” on page 4-13 for a description of
assigning and using package version numbers.

aid_length

The value of the aid_length item gives the number of bytes in the aid array.
Valid values are between 5 and 16, inclusive.

aid[]

The aid array contains the ISO AID of this package (Section 4.2, “AID-based
Naming” on page 4-3).

5.6.2 CONSTANT_Classref
The CONSTANT_Classref_info structure is used to represent a class or interface:

1. This restriction is imposed by the firewall defined in the Runtime Environment Specification, Java Card Platform,
Version 2.2.2.

CONSTANT_Classref_info {
u1 tag
u2 name_index

}

5-6 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The items of the CONSTANT_Classref_info structure are the following:

tag

The tag item has the value of CONSTANT_Classref (7).

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (Section 5.6.4, “CONSTANT_Utf8” on page 5-7) structure
representing a valid fully qualified Java class or interface name. This name is fully
qualified since it may represent a class or interface defined in a package other
than the one described in the export file.

As in Java class files, ASCII periods (‘.’) that normally separate the identifiers in a
class or interface name are replaced by ASCII forward slashes (‘/’). For example,
the interface name javacard.framework.Shareable is represented in a
CONSTANT_Utf8_info structure as javacard/framework/Shareable.

5.6.3 CONSTANT_Integer
The CONSTANT_Integer_info structure is used to represent four-byte numeric (int)
constants:

The items of the CONSTANT_Integer_info structure are the following:

tag

The tag item has the value of CONSTANT_Integer (3).

bytes

The bytes item of the CONSTANT_Integer_info structure contains the value of
the int constant. The bytes of the value are stored in big-endian (high byte first)
order.

The value of a boolean type is 1 to represent true and 0 to represent false.

5.6.4 CONSTANT_Utf8
The CONSTANT_Utf8_info structure is used to represent constant string values.
UTF-8 strings are encoded in the same way as described in The Java Virtual Machine
Specification (§ 4.4.7).

CONSTANT_Integer_info {
u1 tag
u4 bytes

}

Chapter 5 The Export File Format 5-7

The CONSTANT_Utf8_info structure is:

The items of the CONSTANT_Utf8_info structure are the following:

tag

The tag item has the value of CONSTANT_Utf8 (1).

length

The value of the length item gives the number of bytes in the bytes array (not
the length of the resulting string). The strings in the CONSTANT_Utf8_info
structure are not null-terminated.

bytes[]

The bytes array contains the bytes of the string. No byte may have the value
(byte)0 or (byte)0xF0-(byte)0xFF.

5.7 Classes and Interfaces
Each class and interface is described by a variable-length class_info structure.
The format of this structure is:

The items of the class_info structure are as follows:

token

The value of the token item is the class token (Section 4.3.7.2, “Classes and
Interfaces” on page 4-8) assigned to this class or interface.

access_flags

CONSTANT_Utf8_info {
u1 tag
u2 length
u1 bytes[length]

}

class_info {
u1 token
u2 access_flags
u2 name_index
u2 export_supers_count
u2 supers[export_supers_count]
u1 export_interfaces_count
u2 interfaces[export_interfaces_count]
u2 export_fields_count
field_info fields[export_fields_count]
u2 export_methods_count
method_info methods[export_methods_count]

}

5-8 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The value of the access_flags item is a mask of modifiers used with class and
interface declarations. The access_flags modifiers are shown in the following
table.

The ACC_SHAREABLE flag indicates whether this class or interface is shareable.1 A
class is shareable if it implements (directly or indirectly) the
javacard.framework.Shareable interface. An interface is shareable if it is or
extends (directly or indirectly) the javacard.framework.Shareable interface.

The ACC_REMOTE flag indicates whether this class or interface is remote. The
value of this flag must be one if and only if the class or interface satisfies the
requirements defined in Section 2.2.6.1, “Remote Classes and Remote Interfaces”
on page 2-12.

All other class access and modifier flags are defined in the same way and with the
same restrictions as described in The Java Virtual Machine Specification.

Since all classes and interfaces represented in an export file are public, the
ACC_PUBLIC flag must always be set.

All other flag values are reserved. Their values must be zero.

name_index

TABLE 5-3 Export File Class Access and Modifier Flags

Name Value Meaning Used By

ACC_PUBLIC 0x0001 Is public; may be
accessed from outside
its package

Class, interface

ACC_FINAL 0x0010 Is final; no subclasses
allowed.

Class

ACC_INTERFACE 0x0200 Is an interface Interface

ACC_ABSTRACT 0x0400 Is abstract; may not
be instantiated

Class, interface

ACC_SHAREABLE 0x0800 Is shareable; may be
shared between Java
Card applets.

Class, interface

ACC_REMOTE 0x1000 Is remote; may be
accessed by Java Card
RMI

Class,
interface

1. The ACC_SHAREABLE flag is defined to enable Java Card virtual machines to implement the firewall
restrictions defined by the Runtime Environment Specification, Java Card Platform, Version 2.2.2.
Chapter 5 The Export File Format 5-9

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Classref_info (Section 5.6.2, “CONSTANT_Classref” on page 5-6)
structure representing a valid, fully qualified Java class or interface name.

export_supers_count

The value of the export_supers_count item indicates the number of entries in
the supers array.

supers[]

The supers array contains an entry for each public superclass of this class or
interface. It does not include package visible superclasses.

For a class, each value in the supers array must be a valid index into the
constant_pool table. The constant_pool entry at each value must be a
CONSTANT_Classref_info structure (Section 5.6.2, “CONSTANT_Classref” on
page 5-6) representing a valid, fully-qualified Java class name. Entries in the
supers array can occur in any order.

For an interface, the supers array contains a single value representing a valid
index into the constant_pool table. The constant_pool entry must be a
CONSTANT_Classref_info structure (Section 5.6.2, “CONSTANT_Classref” on
page 5-6) representing the fully-qualified name of the java.lang.Object class.

export_interfaces_count

The value of the export_interfaces_count item indicates the number of
entries in the interfaces array.

interfaces[]

If this class_info structure describes a class, the interfaces array contains an
entry for each public interface implemented by this class. It does not include
package-visible interfaces. It does include all public superinterfaces in the
hierarchies of public interfaces implemented by this class.

If this class_info structure describes an interface, the interfaces array
contains an entry for each public interface extended by this interface. It does not
include package visible interfaces. It does include all public superinterfaces in the
hierarchies of public interfaces extended by this interface.

Each value in the interfaces array must be a valid index into the
constant_pool table. The constant_pool entry at each value must be a
CONSTANT_Classref_info structure (Section 5.6.2, “CONSTANT_Classref” on
page 5-6) representing a valid, fully-qualified Java interface name. Entries in the
interfaces array can occur in any order.

export_fields_count

The value of the export_fields_count item gives the number of entries in the
fields table.
5-10 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

fields[]

Each value in the fields table is a variable-length field_info (Section 5.8,
“Fields” on page 5-11) structure. The field_info contains an entry for each
publicly accessible field, both class variables and instance variables, declared by
this class or interface. It does not include items representing fields that are
inherited from superclasses or superinterfaces.

export_methods_count

The value of the export_methods_count item gives the number of entries in
the methods table.

methods[]

Each value in the methods table is a method_info (Section 5.9, “Methods” on
page 5-13) structure. The method_info structure contains an entry for each
publicly accessible class (static or constructor) method defined by this class, and
each publicly accessible instance method defined by this class or its superclasses,
or defined by this interface or its super-interfaces.

5.8 Fields
Each field is described by a variable-length field_info structure. The format of
this structure is:

The items of the field_info structure are as follows:

token

The token item is the token assigned to this field. There are three scopes for field
tokens: final static fields of primitive types (compile-time constants), all
other static fields, and instance fields.

If this field is a compile-time constant, the value of the token item is 0xFF.
Compile-time constants are represented in export files, but are not assigned token
values suitable for late binding. Instead Java Card Converters must replace
bytecodes that reference final static fields with bytecodes that load the
constant value of the field.1

field_info {
u1 token
u2 access_flags
u2 name_index
u2 descriptor_index
u2 attributes_count
attribute_info attributes[attributes_count]

}

Chapter 5 The Export File Format 5-11

If this field is static, but is not a compile-time constant, the token item
represents a static field token (Section 4.3.7.3, “Static Fields” on page 4-8).

If this field is an instance field, the token item represents an instance field token
(Section 4.3.7.5, “Instance Fields” on page 4-9).

access_flags

The value of the access_flags item is a mask of modifiers used with fields. The
access_flags modifiers are shown in the following table.

Field access and modifier flags are defined in the same way and with the same
restrictions as described in The Java Virtual Machine Specification.

Since all fields represented in an export file are either public or protected, exactly
one of the ACC_PUBLIC or ACC_PROTECTED flag must be set.

The Java Card virtual machine reserves all other flag values. Their values must be
zero.

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (Section 5.6.4, “CONSTANT_Utf8” on page 5-7) structure
representing a valid Java field name stored as a simple (not fully qualified) name,
that is, as a Java identifier.

descriptor_index

1. Although Java compilers ordinarily replace references to final static fields of primitive types with primitive
constants, this functionality is not required.

TABLE 5-4 Export File Field Access and Modifier Flags

Name Value Meaning Used By

ACC_PUBLIC 0x0001 Is public; may be
accessed from outside its
package.

Any field

ACC_PROTECTED 0x0004 Is protected; may be
accessed within
subclasses.

Class field
Instance field

ACC_STATIC 0x0008 Is static. Class field
Interface field

ACC_FINAL 0x0010 Is final; no further
overriding or assignment
after initialization.

Any field
5-12 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (Section 5.6.4, “CONSTANT_Utf8” on page 5-7) structure
representing a valid Java field descriptor.

Representation of a field descriptor in an export file is the same as in a Java class
file. See the specification described in The Java Virtual Machine Specification
(§4.3.2).

If this field is a reference-type, the class referenced must be a public class.

attributes_count

The value of the attributes_count item indicates the number of additional
attributes of this field. The only field_info attribute currently defined is the
ConstantValue attribute (Section 5.10.1, “ConstantValue Attribute” on
page 5-15). For static final fields of primitive types, the value must be 1; that is,
when both the ACC_STATIC and ACC_FINAL bits in the flags item are set an
attribute must be present. For all other fields the value of the
attributes_count item must be 0.

attributes[]

The only attribute defined for the attributes table of a field_info structure by
this specification is the ConstantValue attribute (Section 5.10.1, “ConstantValue
Attribute” on page 5-15). This must be defined for static final fields of primitive
types (boolean, byte, short, and int).

5.9 Methods
Each method is described by a variable-length method_info structure. The format
of this structure is:

The items of the method_info structure are as follows:

token

The token item is the token assigned to this method. If this method is a static
method or constructor, the token item represents a static method token
(Section 4.3.7.4, “Static Methods and Constructors” on page 4-8). If this method is
a virtual method, the token item represents a virtual method token

method_info {
u1 token
u2 access_flags
u2 name_index
u2 descriptor_index

}

Chapter 5 The Export File Format 5-13

(Section 4.3.7.6, “Virtual Methods” on page 4-9). If this method is an interface
method, the token item represents an interface method token (Section 4.3.7.7,
“Interface Methods” on page 4-10).

access_flags

The value of the access_flags item is a mask of modifiers used with methods.
The access_flags modifiers are shown in the following table.

Method access and modifier flags are defined in the same way and with the same
restrictions as described in The Java Virtual Machine Specification.

Since all methods represented in an export file are either public or protected,
exactly one of the ACC_PUBLIC or ACC_PROTECTED flag must be set.

Unlike in Java class files, the ACC_NATIVE flag is not supported in export files.
Whether a method is native is an implementation detail that is not relevant to
importing packages. The Java Card virtual machine reserves all other flag values.
Their values must be zero.

name_index

The value of the name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (Section 5.6.4, “CONSTANT_Utf8” on page 5-7) structure
representing either the special internal method name for constructors, <init>, or
a valid Java method name stored as a simple (not fully qualified) name.

descriptor_index

TABLE 5-5 Export File Method Access and Modifier Flags

Name Value Meaning Used By

ACC_PUBLIC 0x0001 Is public; may be accessed
from outside its package.

Any method

ACC_PROTECTED 0x0004 Is protected; may be
accessed within
subclasses.

Class/instance
method

ACC_STATIC 0x0008 Is static. Class/instance
method

ACC_FINAL 0x0010 Is final; no further
overriding or assignment
after initialization.

Class/instance
method

ACC_ABSTRACT 0x0400 Is abstract; no
implementation is
provided

Any method
5-14 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The value of the descriptor_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (Section 5.6.4, “CONSTANT_Utf8” on page 5-7) structure
representing a valid Java method descriptor.

Representation of a method descriptor in an export file is the same as in a Java
class file. See the specification described in The Java Virtual Machine Specification
(Section 4.3.3, “The Export File and Conversion” on page 4-6).

All classes referenced in a descriptor must be public classes.

5.10 Attributes
Attributes are used in the field_info (Section 5.8, “Fields” on page 5-11) structure
of the export file format. All attributes have the following general format:

5.10.1 ConstantValue Attribute
The ConstantValue attribute is a fixed-length attribute used in the attributes table
of the field_info structures. A ConstantValue attribute represents the value of
a final static field (compile-time constant); that is, both the ACC_STATIC and
ACC_FINAL bits in the flags item of the field_info structure must be set. There
can be no more than one ConstantValue attribute in the attributes table of a given
field_info structure.

The ConstantValue attribute has the format:

The items of the ConstantValue_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info (Section 5.6.4, “CONSTANT_Utf8” on page 5-7) structure
representing the string “ConstantValue.”

attribute_info {
u2 attribute_name_index
u4 attribute_length
u1 info[attribute_length]

}

ConstantValue_attribute {
u2 attribute_name_index
u4 attribute_length
u2 constantvalue_index

}

Chapter 5 The Export File Format 5-15

attribute_length

The value of the attribute_length item of a ConstantValue_attribute
structure must be 2.

constantvalue_index

The value of the constantvalue_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must give the
constant value represented by this attribute.

The constant_pool entry must be of a type CONSTANT_Integer (Section 5.6.3,
“CONSTANT_Integer” on page 5-7).
5-16 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

CHAPTER 6

The CAP File Format

This chapter describes the Java Card converted applet (CAP) file format. Each CAP
file contains all of the classes and interfaces defined in one Java package. Java Card
Converters must be capable of producing CAP files that conform to the specification
provided in this chapter.

A CAP file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are
constructed by reading in two and four consecutive 8-bit bytes, respectively.
Multibyte data items are always stored in big-endian order, where the high-order
bytes come first. The first bit read of an 8-bit quantity is considered the high bit.

This chapter defines its own set of data types representing Java Card CAP file data:
the types u1, and u2 represent an unsigned one-, and two-byte quantities,
respectively. Some u1 types are represented as bitfield structures, consisting of arrays
of bits. The zeroeth bit in each bit array represents the most significant bit, or high
bit.

The Java Card CAP file format is presented using pseudo structures written in a C-
like structure notation. To avoid confusion with the fields of Java Card virtual
machine classes and class instances, the contents of the structures describing the Java
Card CAP file format are referred to as items. Unlike the fields of a C structure,
successive items are stored in the Java Card platform file sequentially, without
padding or alignment.

Variable-sized tables, consisting of variable-sized items, are used in several CAP file
data structures. Although we will use C-like array syntax to refer to table items, the
fact that tables are streams of variable-sized structures means that it is not possible
to directly translate a table index into a byte offset into the table.

A data structure referred to as an array consists of items equal in size.

Some items in the structures of the CAP file format are describe using a C-like union
notation. The bytes contained in a union structure have one of the two formats.
Selection of the two formats is based on the value of the high bit of the structure.
6-1

6.1 Component Model
A Java Card CAP file consists of a set of components. Each component describes a
set of elements in the Java package defined, or an aspect of the CAP file. A complete
CAP file must contain all of the required components specified in this chapter. Three
components are optional: the Applet Component (Section 6.5, “Applet Component”
on page 6-12), Export Component (Section 6.12, “Export Component” on page 6-47),
and Debug Component (Section 6.14, “Debug Component” on page 6-57). The
Applet Component is included only if one or more Applets are defined in the
package. The Export Component is included only if classes in other packages may
import elements in the package defined. The Debug Component contains all of the
data necessary for debugging a package.

The content of each component defined in a CAP file must conform to the
corresponding format specified in this chapter. All components have the following
general format:

Each component begins with a 1-byte tag indicating the kind of component. Valid
tags and their values are listed in TABLE 6-1. The size item indicates the number of
bytes in the info array of the component, not including the tag and size items.

The content and format of the info array varies with the type of component.

component {
u1 tag
u2 size
u1 info[]

}

TABLE 6-1 CAP File Component Tags

Component Type Value

COMPONENT_Header 1

COMPONENT_Directory 2

COMPONENT_Applet 3

COMPONENT_Import 4

COMPONENT_ConstantPool 5

COMPONENT_Class 6

COMPONENT_Method 7

COMPONENT_StaticField 8

COMPONENT_ReferenceLocation 9
6-2 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Sun Microsystems, Inc. may define additional components in future versions of this
Java Card virtual machine specification. It is guaranteed that additional components
will have tag values between 13 and 127, inclusive.

6.1.1 Containment in a JAR File
Each CAP file component is represented as a single file. The component file names
are enumerated in TABLE 6-2. These names are not case sensitive.

All CAP file components are stored in a JAR file. As described in Section 4.1.3, “JAR
File Container” on page 4-2, the path to the CAP file component files in a JAR file
consists of a directory called javacard that is in a subdirectory representing the
package’s directory. For example, the CAP file component files of the package

COMPONENT_Export 10

COMPONENT_Descriptor 11

COMPONENT_Debug 12

TABLE 6-2 CAP File Component File Names

Component Type File Name

COMPONENT_Header Header.cap

COMPONENT_Directory Directory.cap

COMPONENT_Applet Applet.cap

COMPONENT_Import Import.cap

COMPONENT_ConstantPool ConstantPool.cap

COMPONENT_Class Class.cap

COMPONENT_Method Method.cap

COMPONENT_StaticField StaticField.cap

COMPONENT_ReferenceLocation RefLocation.cap

COMPONENT_Export Export.cap

COMPONENT_Descriptor Descriptor.cap

COMPONENT_Debug Debug.cap

TABLE 6-1 CAP File Component Tags

Component Type Value
Chapter 6 The CAP File Format 6-3

javacard.framework are located in the subdirectory
javacard/framework/javacard. Other files, including other CAP files, may also
reside in a JAR file that contains CAP file component files.

The JAR file format provides a vehicle suitable for the distribution of CAP file
components. It is not intended or required that the JAR file format be used as the
load file format for loading CAP file components onto a Java Card technology-
enabled device. See Section 6.2, “Installation” on page 6-5 for more information.

The name of a JAR file containing CAP file components is not defined as part of this
specification. The naming convention used by the Sun Microsystems, Inc. Java Card
Converter Tool is to append .cap to the simple (meaning not fully qualified)
package name. For example, the CAP file produced for the package
com.sun.javacard.JavaLoyalty would be named JavaLoyalty.cap.

6.1.2 Defining New Components
Java Card CAP files are permitted to contain new, or custom, components. All new
components not defined as part of this specification must not affect the semantics of
the specified components, and Java Card virtual machines must be able to accept
CAP files that do not contain new components. Java Card virtual machine
implementations are required to silently ignore components they do not recognize.

New components are identified in two ways: they are assigned both an ISO 7816-5
AID (Section 4.2, “AID-based Naming” on page 4-3) and a tag value. Valid tag
values are between 128 and 255, inclusive. Both of these identifiers are recorded in
the custom_component item of the Directory Component (Section 6.4, “Directory
Component” on page 6-9).

The new component must conform to the general component format defined in this
chapter, with a tag value, a size value indicating the number of bytes in the
component (excluding the tag and size items), and an info item containing the
content of the new component.

A new component file is stored in a JAR file, following the same restrictions as those
specified in Section 4.1.3, “JAR File Container” on page 4-2. That is, the file
containing the new component must be located in the
<package_directory>/javacard subdirectory of the JAR file and must have the
extension .cap.
6-4 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

6.2 Installation
Installing a CAP file components onto a Java Card technology-enabled device entails
communication between a Java Card technology-enabled terminal and that device.
While it is beyond the scope of this specification to define a load file format or
installation protocol between a terminal and a device, the CAP file component order
shown in TABLE 6-3 is a reference load order suitable for an implementation with a
simple memory management model on a limited memory device.1

The component type COMPONENT_Debug is not intended for download to the device.
It is intended to be used off-card in conjunction with a suitably instrumented Java
Card virtual machine.

TABLE 6-3 Reference Component Install Order

Component Type

COMPONENT_Header

COMPONENT_Directory

COMPONENT_Import

COMPONENT_Applet

COMPONENT_Class

COMPONENT_Method

COMPONENT_StaticField

COMPONENT_Export

COMPONENT_ConstantPool

COMPONENT_ReferenceLocation

COMPONENT_Descriptor (optional)

1. Both the Java Card Forum and Global Platform specification have adopted this component load order as a
standard to enhance interoperability. In both cases, loading the Descriptor Component is optional.
Furthermore, the Global Platform specification defines the format of packets (APDUs) used during
installation.
Chapter 6 The CAP File Format 6-5

6.3 Header Component
The Header Component contains general information about this CAP file and the
package it defines. It is described by the following variable-length structure:

The items in the header_component structure are as follows:

tag

The tag item has the value COMPONENT_Header (1).

size

The size item indicates the number of bytes in the header_component
structure, excluding the tag and size items. The value of the size item must be
greater than zero.

magic

The magic item supplies the magic number identifying the Java Card CAP file
format; it has the value 0xDECAFFED.

minor_version, major_version

The minor_version and major_version items are the minor and major
version numbers of this CAP file. Together, a major and a minor version number
determine the version of the CAP file format. If a CAP file has the major version
number of M and minor version number of m, the version of the CAP file’s format
is M.m.

A change in the major version number indicates a major incompatibility change,
one that requires a fundamentally different Java Card virtual machine. A Java
Card virtual machine is not required to support CAP files with different major
version numbers. A Java Card virtual machine is required to support CAP files
having a given major version number and all valid minor version numbers in the
range 0 through some particular minor_version where a valid minor version
number is a minor version number that has been defined in a version of the Java
Card virtual machine specification.

header_component {
u1 tag
u2 size
u4 magic
u1 minor_version
u1 major_version
u1 flags
package_info package
package_name_info package_name

}

6-6 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

In this specification, the major version of the CAP file format has the value 2 and
the minor version has the value 2. Only Sun Microsystems, Inc. may define the
meaning and values of new CAP file format versions.

flags

The flags item is a mask of modifiers that apply to this package. The flags
modifiers are shown in the following table.

The ACC_INT flag has the value of one if the Java int type is used in this package.
The int type is used if one or more of the following is present:

■ a parameter to a method of type int,
■ a parameter to a method of type int array,
■ a local variable of type int,
■ a local variable of type int array,
■ a field of type int,
■ a field of type int array,
■ an instruction of type int, or
■ an instruction of type int array.

Otherwise the ACC_INT flag has the value of 0.

The ACC_EXPORT flag has the value of one if an Export Component (Section 6.12,
“Export Component” on page 6-47) is included in this CAP file. Otherwise it has
the value of 0.

The ACC_APPLET flag has the value of one if an Applet Component (Section 6.5,
“Applet Component” on page 6-12) is included in this CAP file. Otherwise it has
the value of 0.

All other bits in the flags item not defined in TABLE 6-4 are reserved for future use.
Their values must be zero.

package

The package item describes the package defined in this CAP file. It is
represented as a package_info structure:

TABLE 6-4 CAP File Package Flags

Flags Value

ACC_INT 0x01

ACC_EXPORT 0x02

ACC_APPLET 0x04

package_info {
u1 minor_version
u1 major_version
Chapter 6 The CAP File Format 6-7

The items in the package_info structure are as follows:

minor_version, major_version

The minor_version and major_version items are the minor and major
version numbers of this package. These values uniquely identify the particular
implementation of this package and indicate the binary compatibility between
packages. See Section 4.5, “Package Versions” on page 4-13 for a description of
assigning and using package version numbers.

AID_length

The AID_length item represents the number of bytes in the AID item. Valid
values are between 5 and 16, inclusive.

AID[]

The AID item represents the Java Card platform name of the package. See ISO
7816-5 for the definition of an AID (Section 4.2, “AID-based Naming” on
page 4-3).

package_name

The package_name item describes the name of the package defined in this CAP
file. It is represented as a package_name_info[] structure:

The items in the package_name_info[] structure are as follows:

name_length

The name_length item is the number of bytes used in the name item to
represent the name of this package in UTF-8 format. The value of this item may
be zero if and only if the package does not define any remote interfaces or
remote classes.

name[]

The name[] item is a variable length representation of the fully qualified name
of this package in UTF-8 format. The fully qualified name is represented in
internal form as described in Java Virtual Machine Specification (Section 4.2).

u1 AID_length
u1 AID[AID_length]

}

package_name_info {
u1 name_length
u1 name[name_length]

}

6-8 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

6.4 Directory Component
The Directory Component lists the size of each of the components defined in this
CAP file. When an optional component is not included, such as the Applet
Component (Section 6.5, “Applet Component” on page 6-12), Export Component
(Section 6.12, “Export Component” on page 6-47), or Debug Component
(Section 6.14, “Debug Component” on page 6-57), it is represented in the Directory
Component with size equal to zero. The Directory Component also includes entries
for new (or custom) components.

The Directory Component is described by the following variable-length structure:

The items in the directory_component structure are as follows:

tag

The tag item has the value COMPONENT_Directory (2).

size

The size item indicates the number of bytes in the directory_component
structure, excluding the tag and size items. The value of the size item must be
greater than zero.

component_sizes[]

The component_sizes item is an array representing the number of bytes in each
of the components in this CAP file. All of the 12 components defined in this
chapter are represented in the component_sizes array. The value of an index
into the array is equal to the value of the tag of the component represented at that
entry, minus 1.

The value in each entry in the component_sizes array is the same as the size
item in the corresponding component. It represents the number of bytes in the
component, excluding the tag and size items.

The value of an entry in the component_sizes array is zero for components not
included in this CAP file. Components that may not be included are the Applet
Component (Section 6.5, “Applet Component” on page 6-12), the Export

directory_component {
u1 tag
u2 size
u2 component_sizes[12]
static_field_size_info static_field_size
u1 import_count
u1 applet_count
u1 custom_count
custom_component_info custom_components[custom_count]

}

Chapter 6 The CAP File Format 6-9

Component (Section 6.12, “Export Component” on page 6-47), and the Debug
Component (Section 6.14, “Debug Component” on page 6-57). For all other
components the value is greater than zero.

static_field_size

The static_field_size item is a static_field_size_info structure. The
structure is defined as:

The items in the static_field_size_info structure are the following:

image_size

The image_size item has the same value as the image_size item in the
Static Field Component (Section 6.10, “Static Field Component” on page 6-41).
It represents the total number of bytes in the static fields defined in this
package, excluding final static fields of primitive types.

array_init_count

The array_init_count item has the same value as the array_init_count
item in the Static Field Component (Section 6.10, “Static Field Component” on
page 6-41). It represents the number of arrays initialized in all of the <clinit>
methods in this package.

array_init_size

The array_init_size item represents the sum of the count items in the
array_init table item of the Static Field Component (Section 6.10, “Static
Field Component” on page 6-41). It is the total number of bytes in all of the
arrays initialized in all of the <clinit> methods in this package.

import_count

The import_count item indicates the number of packages imported by classes
and interfaces in this package. This item has the same value as the count item in
the Import Component (Section 6.6, “Import Component” on page 6-13).

applet_count

The applet_count item indicates the number of applets defined in this package.
If an Applet Component Section 6.5, “Applet Component” on page 6-12) is not
included in this CAP file, the value of the applet_count item is zero. Otherwise
the value of the applet_count item is the same as the value of the count item in
the Applet Component (Section 6.5, “Applet Component” on page 6-12).

custom_count

static_field_size_info {
u2 image_size
u2 array_init_count
u2 array_init_size

}

6-10 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The custom_count item indicates the number of entries in the
custom_components table. Valid values are between 0 and 127, inclusive.

custom_components[]

The custom_components item is a table of variable-length
custom_component_info structures. Each new component defined in this CAP
file must be represented in the table. These components are not defined in this
standard.

The custom_component_info structure is defined as:

The items in entries of the custom_component_info structure are:

component_tag

The component_tag item represents the tag of the component. Valid values
are between 128 and 255, inclusive.

size

The size item represents the number of bytes in the component, excluding the
tag and size items.

AID_length

The AID_length item represents the number of bytes in the AID item. Valid
values are between 5 and 16, inclusive.

AID[]

The AID item represents the Java Card platform name of the component. See
ISO 7816-5 for the definition of an AID (Section 4.2, “AID-based Naming” on
page 4-3).

Each component is assigned an AID conforming to the ISO 7816-5 standard.
Beyond that, there are no constraints on the value of an AID of a custom
component.

custom_component_info {
u1 component_tag
u2 size
u1 AID_length
u1 AID[AID_length]
}

Chapter 6 The CAP File Format 6-11

6.5 Applet Component
The Applet Component contains an entry for each of the applets defined in this
package. Applets are defined by implementing a non-abstract subclass, direct or
indirect, of the javacard.framework.Applet class.1 If no applets are defined, this
component must not be present in this CAP file.

The Applet Component is described by the following variable-length structure:

The items in the applet_component structure are as follows:

tag

The tag item has the value COMPONENT_Applet (3).

size

The size item indicates the number of bytes in the applet_component
structure, excluding the tag and size items. The value of the size item must be
greater than zero.

count

The count item indicates the number of applets defined in this package. The
value of the count item must be greater than zero.

applets[]

The applets item represents a table of variable-length structures each describing
an applet defined in this package.

The items in each entry of the applets table are defined as follows:

AID_length

The AID_length item represents the number of bytes in the AID item. Valid
values are between 5 and 16, inclusive.

AID[]

The AID item represents the Java Card platform name of the applet.

1. Restrictions placed on an applet definition are imposed by the Runtime Environment Specification, Java Card
Platform, Version 2.2.2.

applet_component {
u1 tag
u2 size
u1 count
{ u1 AID_length
 u1 AID[AID_length]

 u2 install_method_offset
} applets[count]

}

6-12 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Each applet is assigned an AID conforming to the ISO 7816-5 standard
(Section 4.2, “AID-based Naming” on page 4-3). The RID (first 5 bytes) of all of
the applet AIDs must have the same value. In addition, the RID of each applet
AIDs must have the same value as the RID of the package defined in this CAP
file.

install_method_offset

The value of the install_method_offset item must be a 16-bit offset into
the info item of the Method Component (Section 6.9, “Method Component”
on page 6-35). The item at that offset must be a method_info structure that
represents the static install(byte[],short,byte) method of the
applet.1 The install(byte[],short,byte) method must be defined in a
class that extends the javacard.framework.applet class, directly or
indirectly. The install(byte[],short,byte) method is called to initialize
the applet.

6.6 Import Component
The Import Component lists the set of packages imported by the classes in this
package. It does not include an entry for the package defined in this CAP file. The
Import Component is represented by the following structure:

The items in the import_component structure are as follows:

tag

The tag item has the value COMPONENT_Import (4).

size

The size item indicates the number of bytes in the import_component
structure, excluding the tag and size items. The value of the size item must be
greater than zero.

count

The count item indicates the number of items in the packages table. The value
of the count item must be between 0 and 128, inclusive.

1. Restrictions placed on the install(byte[],short,byte) method of an applet are imposed by the Runtime Environment
Specification, Java Card Platform, Version 2.2.2.

import_component {
u1 tag
u2 size
u1 count
package_info packages[count]

}

Chapter 6 The CAP File Format 6-13

packages[]

The packages item represents a table of variable-length package_info
structures as defined for package under Section 6.3, “Header Component” on
page 6-6. The table contains an entry for each of the packages referenced in the
CAP file, not including the package defined.

The major and minor version numbers specified in the package_info structure
are equal to the major and minor versions specified in the imported package’s
export file. See Section 4.5, “Package Versions” on page 4-13 for a description of
assigning and using package version numbers.

Components of this CAP file refer to an imported package by using a index in this
packages table. The index is called a package token (Section 4.3.7.1, “Package” on
page 4-8).

6.7 Constant Pool Component
The Constant Pool Component contains an entry for each of the classes, methods,
and fields referenced by elements in the Method Component (Section 6.9, “Method
Component” on page 6-35) of this CAP file. The referencing elements in the Method
Component may be instructions in the methods or exception handler catch types in
the exception handler table.

Entries in the Constant Pool Component reference elements in the Class Component
(Section 6.8, “Class Component” on page 6-21), Method Component (Section 6.9,
“Method Component” on page 6-35), and Static Field Component (Section 6.10,
“Static Field Component” on page 6-41). The Import Component (Section 6.6,
“Import Component” on page 6-13) is also accessed using a package token
(Section 4.3.7.1, “Package” on page 4-8) to describe references to classes, methods
and fields defined in imported packages. Entries in the Constant Pool Component do
not reference other entries internal to itself.

The Constant Pool Component is described by the following structure:

The items in the constant_pool_component structure are as follows:

tag

The tag item has the value COMPONENT_ConstantPool (5).

size

constant_pool_component {
u1 tag
u2 size
u2 count
cp_info constant_pool[count]

}

6-14 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The size item indicates the number of bytes in the constant_pool_component
structure, excluding the tag and size items. The value of the size item must be
greater than zero.

count

The count item represents the number entries in the constant_pool[] array.
Valid values are between 0 and 65535, inclusive.

constant_pool[]

The constant_pool[] item represents an array of cp_info structures:

Each item in the constant_pool[] array is a 4-byte structure. Each structure
must begin with a 1-byte tag indicating the kind of cp_info entry. The content
and format of the 3-byte info array varies with the value of the tag. The valid tags
and their values are listed in the following table.

Java Card platform constant types (“Java Card constant types”) are more specific
than those in Java class files. The categories indicate not only the type of the item
referenced, but also the manner in which it is referenced.

For example, in the Java constant pool there is one constant type for method
references, while in the Java Card platform constant pool (“Java Card constant
pool”) there are three constant types for method references: one for virtual
method invocations using the invokevirtual bytecode, one for super method
invocations using the invokespecial bytecode, and one for static method

cp_info {
 u1 tag
 u1 info[3]
}

TABLE 6-5 CAP File Constant Pool Tags

Constant Type Tag

CONSTANT_Classref 1

CONSTANT_InstanceFieldref 2

CONSTANT_VirtualMethodref 3

CONSTANT_SuperMethodref 4

CONSTANT_StaticFieldref 5

CONSTANT_StaticMethodref 6
Chapter 6 The CAP File Format 6-15

invocations using either the invokestatic or invokespecial bytecode.1 The
additional information provided by a constant type in Java Card technologies
simplifies resolution of references.

There are no ordering constraints on constant pool entries. It is recommended,
however, that CONSTANT_InstanceFieldref (Section 6.7.2,
“CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref” on page 6-18) constants occur early in the array to
permit using getfield_T and putfield_T bytecodes instead of getfield_T_w and
putfield_T_w bytecodes. The former have 1-byte constant pool index
parameters while the latter have 2-byte constant pool index parameters.

The first entry in the constant pool can not be an exception handler class that is
referenced by a catch_type_index of an exception_handler_info
structure. In such a case the value of the catch_type_index would be equal to
0, but the value of 0 in a catch_type_index is reserved to indicate an
exception_handler_info structure that describes a finally block.

6.7.1 CONSTANT_Classref
The CONSTANT_Classref_info structure is used to represent a reference to a class
or an interface. The class or interface may be defined in this package or in an
imported package.

The items in the CONSTANT_Classref_info structure are the following:

tag

The tag item has the value CONSTANT_Classref (1).

class_ref

1. The constant pool index parameter of an invokespecial bytecode is to a CONSTANT_StaticMethodref when the
method referenced is a constructor or a private instance method. In these cases the method invoked is fully
known when the CAP file is created. In the cases of virtual method and super method references, the method
invoked is dependent upon an instance of a class and its hierarchy, both of which may be partially unknown
when the CAP file is created.

CONSTANT_Classref_info {
u1 tag
union {

u2 internal_class_ref
{ u1 package_token
 u1 class_token
} external_class_ref

} class_ref
u1 padding

}

6-16 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The class_ref item represents a reference to a class or interface. If the class or
interface is defined in this package the structure represents an
internal_class_ref and the high bit of the structure is zero. If the class or
interface is defined in another package the structure represents an
external_class_ref and the high bit of the structure is one.

internal_class_ref

The internal_class_ref structure represents a 16-bit offset into the info
item of the Class Component (Section 6.8, “Class Component” on page 6-21) to
an interface_info or class_info structure. The interface_info or
class_info structure must represent the referenced class or interface.

The value of the internal_class_ref item must be between 0 and 32767,
inclusive, making the high bit equal to zero.

external_class_ref

The external_class_ref structure represents a reference to a class or
interface defined in an imported package. The high bit of this structure is one.

package_token

The package_token item represents a package token (Section 4.3.7.1,
“Package” on page 4-8) defined in the Import Component (Section 6.6,
“Import Component” on page 6-13) of this CAP file. The value of this token
must be a valid index into the packages table item of the
import_component structure. The package represented at that index must
be the imported package.

The value of the package token must be between 0 and 127, inclusive.

The high bit of the package_token item is equal to one.

class_token

The class_token item represents the token of the class or interface
(Section 4.3.7.2, “Classes and Interfaces” on page 4-8) of the referenced class
or interface. It has the value of the class token of the class as defined in the
Export file of the imported package.

padding

The padding item has the value zero. It is present to make the size of a
CONSTANT_Classref_info structure the same as all other constants in the
constant_pool[] array.
Chapter 6 The CAP File Format 6-17

6.7.2 CONSTANT_InstanceFieldref,
CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref
References to instance fields, and virtual methods are represented by similar
structures:

The items in these structures are as follows:

tag

The tag item of a CONSTANT_InstanceFieldref_info structure has the value
CONSTANT_InstanceFieldref (2).

The tag item of a CONSTANT_VirtualMethodref_info structure has the value
CONSTANT_VirtualMethodref (3).

The tag item of a CONSTANT_SuperMethodref_info structure has the value
CONSTANT_SuperMethodref (4).

class

The class item represents the class associated with the referenced instance field,
virtual method, or super method invocation. It is a class_ref structure
(Section 6.7.1, “CONSTANT_Classref” on page 6-16). If the referenced class is
defined in this package the high bit is equal to zero. If the reference class is
defined in an imported package the high bit of this structure is equal to one.

The class referenced in the CONSTANT_InstanceField_info structure must be
the class that contains the declaration of the instance field.

The class referenced in the CONSTANT_VirtualMethodref_info structure must
be a class that contains a declaration or definition of the virtual method.

The class referenced in the CONSTANT_SuperMethodref_info structure must be
the class that defines the method that contains the Java language-level super
invocation.

CONSTANT_InstanceFieldref_info {
u1 tag
class_ref class
u1 token

}

CONSTANT_VirtualMethodref_info {
u1 tag
class_ref class
u1 token

}

CONSTANT_SuperMethodref_info {
u1 tag
class_ref class
u1 token

}

6-18 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

token

The token item in the CONSTANT_InstanceFieldref_info structure
represents an instance field token (Section 4.3.7.5, “Instance Fields” on page 4-9)
of the referenced field. The value of the instance field token is defined within the
scope of the class indicated by the class item.

The token item of the CONSTANT_VirtualMethodref_info structure
represents the virtual method token (Section 4.3.7.6, “Virtual Methods” on
page 4-9) of the referenced method. The virtual method token is defined within
the scope of the hierarchy of the class indicated by the class item. If the referenced
method is public or protected the high bit of the token item is zero. If the
referenced method is package-visible the high bit of the token item is one. In this
case the class item must represent a reference to a class defined in this package.

The token item of the CONSTANT_SuperMethodref_info structure represents
the virtual method token (Section 4.3.7.6, “Virtual Methods” on page 4-9) of the
referenced method. Unlike in the CONSTANT_VirtualMethodref_info
structure, the virtual method token is defined within the scope of the hierarchy of
the superclass of the class indicated by the class item. If the referenced method
is public or protected the high bit of the token item is zero. If the referenced
method is package-visible the high bit of the token item is one. In the latter case
the class item must represent a reference to a class defined in this package and
at least one superclass of the class that contains a definition of the virtual method
must also be defined in this package.

6.7.3 CONSTANT_StaticFieldref and
CONSTANT_StaticMethodref
References to static fields and methods are represented by similar structures:

CONSTANT_StaticFieldref_info {
u1 tag
union {

{ u1 padding
u2 offset

} internal_ref
{ u1 package_token
u1 class_token
u1 token

} external_ref
} static_field_ref

}

CONSTANT_StaticMethodref_info {
u1 tag
union {

{ u1 padding
 u2 offset
} internal_ref
{ u1 package_token
Chapter 6 The CAP File Format 6-19

The items in these structures are as follows:

tag

The tag item of a CONSTANT_StaticFieldref_info structure has the value
CONSTANT_StaticFieldref (5).

The tag item of a CONSTANT_StaticMethodref_info structure has the value
CONSTANT_StaticMethodref (6).

static_field_ref and static_method_ref

The static_field_ref and static_method_ref item represents a reference
to a static field or static method, respectively. Static method references
include references to static methods, constructors, and private virtual methods.

If the referenced item is defined in this package the structure represents an
internal_ref and the high bit of the structure is zero. If the referenced item is
defined in another package the structure represents an external_ref and the
high bit of the structure is one.

internal_ref

The internal_ref item represents a reference to a static field or method
defined in this package. The items in the structure are:

padding

The padding item is equal to 0.

offset

The offset item of a CONSTANT_StaticFieldref_info structure
represents a 16-bit offset into the Static Field Image defined by the Static
Field component (Section 6.10, “Static Field Component” on page 6-41) to
this static field.

The offset item of a CONSTANT_StaticMethodref_info structure
represents a 16-bit offset into the info item of the Method Component
(Section 6.9, “Method Component” on page 6-35) to a method_info
structure. The method_info structure must represent the referenced
method.

external_ref

The external_ref item represents a reference to a static field or method
defined in an imported package. The items in the structure are:

package_token

 u1 class_token
 u1 token
} external_ref

} static_method_ref
}

6-20 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The package_token item represents a package token (Section 4.3.7.1,
“Package” on page 4-8) defined in the Import Component (Section 6.6,
“Import Component” on page 6-13) of this CAP file. The value of this token
must be a valid index into the packages table item of the
import_component structure. The package represented at that index must
be the imported package.

The value of the package token must be between 0 and 127, inclusive.

The high bit of the package_token item is equal to one.

class_token

The class_token item represents the token (Section 4.3.7.2, “Classes and
Interfaces” on page 4-8) of the class of the referenced class. It has the value
of the class token of the class as defined in the Export file of the imported
package.

The class indicated by the class_token item must define the referenced
field or method.

token

The token item of a CONSTANT_StaticFieldref_info structure
represents a static field token (Section 4.3.7.3, “Static Fields” on page 4-8) as
defined in the Export file of the imported package. It has the value of the
token of the referenced field.

The token item of a CONSTANT_StaticMethodref_info structure
represents a static method token (Section 4.3.7.4, “Static Methods and
Constructors” on page 4-8) as defined in the Export file of the imported
package. It has the value of the token of the referenced method.

6.8 Class Component
The Class Component describes each of the classes and interfaces defined in this
package. It does not contain complete access information and content details for each
class and interface. Instead, the information included is limited to that required to
execute operations associated with a particular class or interface, without
performing verification. Complete details regarding the classes and interfaces
defined in this package are included in the Descriptor Component (Section 6.13,
“Descriptor Component” on page 6-49).

The information included in the Class Component for each interface is sufficient to
uniquely identify the interface and to test whether or not a cast to that interface is
valid.
Chapter 6 The CAP File Format 6-21

The information included in the Class Component for each class is sufficient to
resolve operations associated with instances of a class. The operations include
creating an instance, testing whether or not a cast of the instance is valid,
dispatching virtual method invocations, and dispatching interface method
invocations. Also included is sufficient information to locate instance fields of type
reference, including arrays.

The classes represented in the Class Component reference other entries in the Class
Component in the form of superclass, superinterface and implemented interface
references. When a superclass, superinterface or implemented interface is defined in
an imported package the Import Component is used in the representation of the
reference.

The classes represented in the Class Component also contain references to virtual
methods defined in the Method Component (Section 6.9, “Method Component” on
page 6-35) of this CAP file. References to virtual methods defined in imported
packages are not explicitly described. Instead such methods are located through a
superclass within the hierarchy of the class, where the superclass is defined in the
same imported package as the virtual method.

The Constant Pool Component (Section 6.7, “Constant Pool Component” on
page 6-14), Export Component (Section 6.12, “Export Component” on page 6-47),
Descriptor Component (Section 6.13, “Descriptor Component” on page 6-49) and
Debug Component (Section 6.14, “Debug Component” on page 6-57) reference
classes and interfaces defined in the Class Component. No other CAP file
components reference the Class Component.

The Class Component is represented by the following structure:

The items in the class_component structure are as follows:

tag

The tag item has the value COMPONENT_Class (6).

size

The size item indicates the number of bytes in the class_component structure,
excluding the tag and size items. The value of the size item must be greater
than zero.

signature_pool_length

class_component {
u1 tag
u2 size
u2 signature_pool_length
type_descriptor signature_pool[]
interface_info interfaces[]

}

6-22 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The signature_pool_length item indicates the number of bytes in the
signature_pool[] item. The value of the signature_pool_length item
must be zero if the package does not define any remote interfaces or remote
classes.

signature_pool[]

The signature_pool[] item represents a list of variable-length
type_descriptor structures. These descriptors represent the signatures of the
remote methods.

interfaces[]

The interfaces item represents an array of interface_info structures. Each
interface defined in this package is represented in the array. The entries are
ordered based on hierarchy such that a superinterface has a lower index than any
of its subinterfaces.

classes[]

The classes item represents a table of variable-length class_info structures.
Each class defined in this package is represented in the array. The entries are
ordered based on hierarchy such that a superclass has a lower index than any of
its subclasses.

6.8.1 type_descriptor
The type_descriptor structure represents the type of a field or the signature of a
method.

The type_descriptor structure contains the following elements:

nibble_count

The nibble_count value represents the number of nibbles required to describe
the type encoded in the type array.

type[]

type_descriptor {
u1 nibble_count;
u1 type[(nibble_count+1) / 2];

}

Chapter 6 The CAP File Format 6-23

The type array contains an encoded description of the type, composed of
individual nibbles. If the nibble_count item is an odd number, the last nibble in
the type array must be 0x0. The values of the type descriptor nibbles are defined
in the following table.

Class reference types are described using the reference nibble 0x6, followed by
a 2-byte (4-nibble) class_ref structure. The class_ref structure is defined as
part of the CONSTANT_Classref_info structure (Section 6.7.1,
“CONSTANT_Classref” on page 6-16). For example, a field of type reference to
p1.c1 in a CAP file defining package p0 is described as:

TABLE 6-6 Type Descriptor Values

Type Value

void 0x1

boolean 0x2

byte 0x3

short 0x4

int 0x5

reference 0x6

array of boolean 0xA

array of byte 0xB

array of short 0xC

array of int 0xD

array of reference 0xE

TABLE 6-7 Encoded Reference Type p1.c1

Nibble Value Description

0 0x6 reference

1 <p1> package token
(high bit on)

2

3 <c1> class token

4

5 0x0 padding
6-24 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The following are examples of the array types:

Method signatures are encoded in the same way, with the return type of the
method encoded at the end of the sequence of nibbles. The return type is encoded
in as many nibbles as required to represent it. For example:

TABLE 6-8 Encoded Byte Array Type

Nibble Value Description

0 0xB array of byte

1 0x0 padding

TABLE 6-9 Encoded Reference Array Type p1.c1

Nibble Value Description

0 0xE array of reference

1 <p1> package token
(high bit on)

2

3 <c1> class token

4

5 0x0 padding

TABLE 6-10 Encoded Method Signature ()V

Nibble Value Description

0 0x1 void

1 0x0 padding

TABLE 6-11 Encoded Method Signature (Lp1.ci;)S

Nibble Value Description

0 0x6 reference

1 <p1> package token
(high bit on)

2

Chapter 6 The CAP File Format 6-25

6.8.2 interface_info and class_info
The interface_info and class_info structures represent interfaces and classes,
respectively. The two are differentiated by the value of the high bit in the structures.
They are defined as follows:

6.8.2.1 interface_info and class_info shared Items

flags

3 <c1> class token

4

5 0x4 short

interface_info {
u1 bitfield {
bit[4] flags
bit[4] interface_count
}
class_ref superinterfaces[interface_count]

interface_name_info interface_name1

1 The interface_name[] item is required if the value of ACC_REMOTE is one. This
item must be omitted otherwise. See the description of this field for more information.

}

class_info {
u1 bitfield {

 bit[4] flags
bit[4] interface_count

}
class_ref super_class_ref
u1 declared_instance_size
u1 first_reference_token
u1 reference_count
u1 public_method_table_base
u1 public_method_table_count
u1 package_method_table_base
u1 package_method_table_count
u2 public_virtual_method_table[public_method_table_count]
u2 package_virtual_method_table[package_method_table_count]
 implemented_interface_info interfaces[interface_count]
remote_interface_info remote_interfaces 2

2 The remote_interfaces item is required if the value of ACC_REMOTE is one. This
item must be omitted otherwise. See the description of this field for more information.

}

TABLE 6-11 Encoded Method Signature (Lp1.ci;)S

Nibble Value Description
6-26 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The flags item is a mask of modifiers used to describe this interface or class.
Valid values are shown in the following table:

The ACC_INTERFACE flag indicates whether this interface_info or
class_info structure represents an interface or a class. The value must be one if
it represents an interface_info structure and zero if a class_info structure.

The ACC_SHAREABLE flag in an interface_info structure indicates whether this
interface is shareable. The value of this flag must be one if and only if the
interface is javacard.framework.Shareable interface or extends that
interface directly or indirectly.

The ACC_SHAREABLE flag in a class_info structure indicates whether this class
is shareable.1 The value of this flag must be one if and only if this class or any of
its superclasses implements an interface that is shareable.

The ACC_REMOTE flag indicates whether this class or interface is remote. The
value of this flag must be one if and only if the class or interface satisfies the
requirements defined in Section 2.2.6.1, “Remote Classes and Remote Interfaces”
on page 2-12.

All other flag values are reserved. Their values must be zero.

interface_count

The interface_count item of the interface_info structure indicates the
number of entries in the superinterfaces[] table item. The value represents
the number of direct and indirect superinterfaces of this interface. Indirect
superinterfaces are the set of superinterfaces of the direct superinterfaces. Valid
values are between 0 and 14, inclusive.

The interface_count item of the class_info structure indicates the number
of entries in the interfaces table item. The value represents the number of
interfaces implemented by this class, including superinterfaces of those interfaces
and potentially interfaces implemented by superclasses of this class. Valid values
are between 0 and 15, inclusive.

TABLE 6-12 CAP File Interface and Class Flags

Name Value

ACC_INTERFACE 0x8

ACC_SHAREABLE 0x4

ACC_REMOTE 0x2

1. A Java Card virtual machine uses the ACC_SHAREABLE flag to implement the firewall restrictions defined by
the Runtime Environment Specification, Java Card Platform, Version 2.2.2.
Chapter 6 The CAP File Format 6-27

6.8.2.2 interface_info Items

superinterfaces[]

The superinterfaces[] item of the interface_info structure is an array of
class_ref structures representing the superinterfaces of this interface. The
class_ref structure is defined as part of the CONSTANT_Classref_info
structure (Section 6.7.1, “CONSTANT_Classref” on page 6-16). This array is empty
if this interface has no superinterfaces. Both direct and indirect superinterfaces are
represented in the array. Class Object is not included.

interface_name[]

The interface_name[] item represents interface name information required if
the interface is remote. The interface_name[] item is defined by a
interface_name_info structure. If the value of the ACC_REMOTE flag is zero,
the structure is defined as:

interface_name_info {

}

If the value of the ACC_REMOTE flag is one, the structure is defined as:

The values in the interface_name_info structure are defined as follows:

interface_name_length

The interface_name_length item is the number of bytes in
interface_name[] item.

interface_name

The item is a variable length representation of the name of this interface in UTF-8
format.

6.8.2.3 class_info Items

super_class_ref

The super_class_ref item of the class_info structure is a class_ref
structure representing the superclass of this class. The class_ref structure is
defined as part of the CONSTANT_Classref_info structure (Section 6.7.1,
“CONSTANT_Classref” on page 6-16).

The super_class_ref item has the value of 0xFFFF only if this class does not
have a superclass. Otherwise the value of the super_class_ref item is limited
only by the constraints of the class_ref structure.

interface_name_info {
u1 interface_name_length
u1 interface_name[interface_name_length]
}

6-28 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

declared_instance_size

The declared_instance_size item of the class_info structure represents
the number of 16-bit cells required to represent the instance fields declared by this
class. It does not include instance fields declared by superclasses of this class.

Instance fields of type int are represented in two 16-bit cells, while all other field
types are represented in one 16-bit cell.

first_reference_token

The first_reference_token item of the class_info structure represents the
instance field token (Section 4.3.7.5, “Instance Fields” on page 4-9) value of the
first reference type instance field defined by this class. It does not include instance
fields defined by superclasses of this class.

If this class does not define any reference type instance fields, the value of the
first_reference_token is 0xFF. Otherwise the value of the
first_reference_token item must be within the range of the set of instance
field tokens of this class.

reference_count

The reference_count item of the class_info structure represents the number
of reference type instance field defined by this class. It does not include reference
type instance fields defined by superclasses of this class.

Valid values of the reference_count item are between 0 and the maximum
number of instance fields defined by this class.

public_method_table_base

The public_method_table_base item of the class_info structure is equal to the
virtual method token value (Section 4.3.7.6, “Virtual Methods” on page 4-9) of the
first method in the public_virtual_method_table[] array. If the
public_virtual_method_table[] array is empty, the value of the
public_method_table_base item is equal to the public_method_table_base
item of the class_info structure of this class’ superclass plus the
public_method_table_count item of the class_info structure of this class’
superclass. If this class has no superclass and the
public_virtual_method_table[] array is empty, the value of the
public_method_table_base item is zero.

public_method_table_count

The public_method_table_count item of the class_info structure indicates the
number of entries in the public_virtual_method_table[] array.

If this class does not define any public or protected override methods, the
minimum valid value of public_method_table_count item is the number of
public and protected virtual methods declared by this class. If this class defines
one or more public or protected override methods, the minimum valid value of
Chapter 6 The CAP File Format 6-29

public_method_table_count item is the value of the largest public or
protected virtual method token, minus the value of the smallest public or
protected virtual override method token, plus one.

The maximum valid value of the public_method_table_count item is the
value of the largest public or protected virtual method token, plus one.

Any value for the public_method_table_count item between the minimum
and maximum specified here is valid. However, the value must correspond to the
number of entries in the public_virtual_method_table[] array.

package_method_table_base

The package_method_table_base item of the class_info structure is equal to
the virtual method token value (Section 4.3.7.6, “Virtual Methods” on page 4-9) of
the first entry in the package_virtual_method_table[] array. If the
package_virtual_method_table[] array is empty, the value of the
package_method_table_base item is equal to the
package_method_table_base item of the class_info structure of this class’
superclass, plus the package_method_table_count item of the class_info
structure of this class’ superclass. If this class has no superclass or inherits from a
class defined in another package and the package_virtual_method_table[]
array is empty, the value of the package_method_table_base item is zero.

package_method_table_count

The package_method_table_count item of the class_info structure indicates
the number of entries in the package_virtual_method_table[] array.

If this class does not define any override methods, the minimum valid value of
package_method_table_count item is the number of package visible virtual
methods declared by this class. If this class defines one or more package visible
override methods, the minimum valid value of package_method_table_count
item is the value of the largest package visible virtual method token, minus the
value of the smallest package visible virtual override method token, plus one.

The maximum valid value of the package_method_table_count item is the
value of the largest package visible method token, plus one.

Any value for the package_method_table_count item between the minimum
and maximum specified here are valid. However, the value must correspond to
the number of entries in the package_virtual_method_table[].

public_virtual_method_table[]

The public_virtual_method_table[] item of the class_info structure
represents an array of public and protected virtual methods. These methods can
be invoked on an instance of this class. The public_virtual_method_table[]
array includes methods declared or defined by this class. It may also include
methods declared or defined by any or all of its superclasses. The value of an
index into this table must be equal to the value of the virtual method token of the
indicated method, minus the value of the public_method_table_base item.
6-30 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Entries in the public_virtual_method_table[] array that represent methods
defined or declared in this package contain offsets into the info item of the
Method Component (Section 6.9, “Method Component” on page 6-35) to the
method_info structure representing the method. Entries that represent methods
defined or declared in an imported package contain the value 0xFFFF.

Entries for methods that are declared abstract are represented in the
public_virtual_method_table[] array in the same way as non-abstract
methods.

package_virtual_method_table[]

The package_virtual_method_table[] item of the class_info structure
represents an array of package-visible virtual methods. These methods can be
invoked on an instance of this class. The package_virtual_method_table[]
array includes methods declared or defined by this class. It may also include
methods declared or defined by any or all of its superclasses that are defined in
this package. The value of an index into this table must be equal to the value of
the virtual method token of the indicated method & 0x7F, minus the value of the
package_method_table_base item.

All entries in the package_virtual_method_table[] array represent methods
defined or declared in this package. They contain offsets into the info item of the
Method Component (Section 6.9, “Method Component” on page 6-35) to the
method_info structure representing the method.

Entries for methods that are declared abstract, not including those defined by
interfaces, are represented in the package_virtual_method_table[] array in
the same way as non-abstract methods.

interfaces[]

The interfaces item of the class_info structure represents a table of
variable-length implemented_interface_info structures. The table must
contain an entry for each of the directly implemented interfaces indicated in the
declaration of this class and each of the interfaces in the hierarchies of those
interfaces. Interfaces that occur more than once are represented by a single entry.

Given the declarations below, the number of entries for class c0 is 1 and the entry
in the interfaces array is i0. The number of entries for class c1 is 3 and the
entries in the interfaces array are i1, i2, and i3. The entries for class c1 must
not include interface i0, which is implemented only by the superclass of c1.

remote_interfaces

interface i0 {}
interface i1 {}
interface i2 extends i1 {}
interface i3 {}
class c0 implements i0 {}
class c1 extends c0 implements i2, i3 {}
Chapter 6 The CAP File Format 6-31

The remote_interfaces item represents information required if this class or
any of its super classes implements a remote interface. This item must be omitted
if the ACC_REMOTE flag has a value of zero. The remote_interfaces item is
defined by a remote_interface_info structure.

6.8.2.4 implemented_interface_info

The implemented_interface_info structure is defined as follows:

The items in the implemented_interface_info structure are defined as follows:

interface

The interface item has the form of a class_ref structure. The class_ref
structure is defined as part of the CONSTANT_Classref_info structure
(Section 6.7.1, “CONSTANT_Classref” on page 6-16). The interface_info
structure referenced by the interface item represents an interface implemented by
this class.

count

The count item indicates the number of entries in the index[] array.

index[]

The index[] item is an array that maps declarations of interface methods to
implementations of those methods in this class. It is a representation of the set of
methods declared by the interface and its superinterfaces.

Entries in the index array must be ordered such that the interface method token
value (Section 4.3.7.7, “Interface Methods” on page 4-10) of the interface method
is equal to the index into the array. The interface method token value is assigned
to the method within the scope of the interface definition, not within the scope of
this class.

The values in the index[] array represent the virtual method tokens
(Section 4.3.7.6, “Virtual Methods” on page 4-9) of the implementations of the
interface methods. The virtual method token values are defined within the scope
of the hierarchy of this class.

6.8.2.5 remote_interface_info

 If the value of the ACC_REMOTE flag is zero, this structure is defined as:

remote_interface_info {

implemented_interface_info {
class_ref interface
u1 count
u1 index[count]

}

6-32 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

}

If the value of the ACC_REMOTE flag is one, this structure is defined as:

The remote_interface_info structure is defined as:

remote_methods_count

The remote_methods_count item indicates the number of entries in the
remote_methods array.

remote_methods[]

The remote_methods item of the class_info structure is an array of
remote_method_info structures that maps each remote method available in the
class to its hash code and its type definition in the signature_pool[]. The
methods are listed in numerically ascending order of hash values.

The remote_method_info structure is defined as follows:

The items in the remote_method_info structure are defined as follows:

remote_method_hash

The remote_method_hash item contains a two-byte hash value for the
method. The hash value is computed from the simple (not fully qualified)
name of the method concatenated with its method descriptor. The
representation of the method descriptor is the same as in a Java class file. See
the specification described in Java Virtual Machine Specification (§4.3.3).

The hash value uniquely identifies the method within the class.

The hash code is defined as the first two bytes of the SHA-1 message digest
function performed on the hash_modifier[] item described below followed
by the name of the method followed by the method descriptor representation
in UTF-8 format. Rare hash collisions are averted automatically during package
conversion by adjusting the anti-collision string.

signature_offset

remote_interface_info {
u1 remote_methods_count
remote_method_info remote_methods[remote_methods_count]
u1 hash_modifier_length
u1 hash_modifier[hash_modifier_length]
u1 class_name_length
u1 class_name[class_name_length]
u1 remote_interfaces_count
class_ref remote_interfaces[remote_interfaces_count]

}

remote_method_info {
u2 remote_method_hash
 u2 signature_offset
u1 virtual_method_token

}

Chapter 6 The CAP File Format 6-33

The signature_offset item contains an offset from the signature_pool
item of the info item of the Class Component to the variable-length type
descriptor structure inside the signature_pool[] item. This structure
represents the signature of the remote method.

virtual_method_token

The virtual_method_token item is the virtual method token of the remote
method in this class.

hash_modifier_length

The hash_modifier_length item is the number of bytes in the following
hash_modifier item. The value of this item must be zero if an anti-collision
string is not required.

hash_modifier[]

The hash_modifier[] item is a variable length representation of the anti-
collision string in UTF-8 format.

class_name_length

The class_name_length item is the number of bytes used in the
class_name[] item.

class_name[]

The class_name[] item is a variable length representation of the name of this
class in UTF-8 format.

remote_interfaces_count

The remote_interfaces_count item is the number of interfaces listed in the
following remote_interfaces[] item.

remote_interfaces[]

The remote_interfaces[] item is a variable length array of class_ref items.
It represents the remote interfaces implemented by this class. The remote
interfaces listed in this array, together with their superinterfaces must be the
complete set of remote interfaces implemented by this class and all its
superclasses.

Each entry has the form of a class_ref structure. Each class_ref structure
must reference an interface_info structure representing a remote interface
implemented by this class.

The entries in the remote_interfaces[] array must be ordered such that all
remote interfaces from the same package are listed consecutively.
6-34 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

6.9 Method Component
The Method Component describes each of the methods declared in this package,
excluding <clinit> methods and interface method declarations. Abstract methods
defined by classes (not interfaces) are included. The exception handlers associated
with each method are also described.

The Method Component does not contain complete access information and
descriptive details for each method. Instead, the information is optimized for size
and therefore limited to that required to execute each method without performing
verification. Complete details regarding the methods defined in this package are
included in the Descriptor Component (Section 6.13, “Descriptor Component” on
page 6-49). Among other information, the Descriptor Component contains the
location and number of bytecodes for each method in the Method Component. This
information can be used to parse the methods in the Method Component.

Instructions and exception handler catch types in the Method Component reference
entries in the Constant Pool Component (Section 6.7, “Constant Pool Component” on
page 6-14). No other CAP file components, including the Method Component, are
referenced by the elements in the Method Component.

The Applet Component (Section 6.5, “Applet Component” on page 6-12), Constant
Pool Component (Section 6.7, “Constant Pool Component” on page 6-14), Class
Component (Section 6.8, “Class Component” on page 6-21), Export Component
(Section 6.12, “Export Component” on page 6-47), Descriptor Component
(Section 6.13, “Descriptor Component” on page 6-49), and Debug Component
(Section 6.14, “Debug Component” on page 6-57) reference methods defined in the
Method Component. The Reference Location Component (Section 6.11, “Reference
Location Component” on page 6-44) references all constant pool indices contained in
the Method Component. No other CAP file components reference the Method
Component.

The Method Component is represented by the following structure:

The items in the method_component structure are as follows:

tag

The tag item has the value COMPONENT_Method (7).

size

method_component {
u1 tag
u2 size
u1 handler_count
exception_handler_info exception_handlers[handler_count]
method_info methods[]

}

Chapter 6 The CAP File Format 6-35

The size item indicates the number of bytes in the method_component
structure, excluding the tag and size items. The value of the size item must be
greater than zero.

handler_count

The handler_count item represents the number of entries in the
exception_handlers array. Valid values are between 0 and 255, inclusive.

exception_handlers[]

The exception_handlers item represents an array of 8-byte
exception_handler_info structures. Each exception_handler_info
structure represents a catch or finally block defined in a method of this package.

Entries in the exception_handlers array are sorted in ascending order by the
the offset to the handler of the exception handler. Smaller offset values occur first
in the array. This ordering constraint ensures that the first match found when
searching for an exception handler is the correct match.

There are two consequences of this ordering constraint. First, a handler that is
nested with the active range (try block) of another handler occurs first in the
array. Second, when multiple handlers are associated with the same active range,
they are ordered as they occur in a method. This is consistent with the ordering
constraints defined for Java class files. An example is shown below.

CODE EXAMPLE 6-1 Exception Handler Example

The methods item represents a table of variable-length method_info structures.
Each entry represents a method declared in a class of this package. <clinit>
methods and interface method declaration are not included; all other methods,
including non-interface abstract methods, are.

try {
...

try {
 ...

} catch (NullPointerException e) { // first
...

}
...

} catch (Exception e) { // second
...

} finally { // third
...

}
...
try {

...
} catch (SecurityException e) { // fourth

...
}
methods[]
6-36 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

6.9.1 exception_handler_info
The exception_handler_info structure is defined as follows:

The items in the exception_handler_info structure are as follows:

start_offset, active_length

The start_offset and active_length pair indicate the active range (try
block) an exception handler. The start_offset item indicates the beginning of
the active range while the active_length item indicates the number of bytes
contained in the active range.

end_offset is defined as start_offset plus active_length.

The start_offset item and end_offset are byte offsets into the info item of
the Method Component. The value of the start_offset must be a valid offset
into a bytecodes array of a method_info structure to an opcode of an
instruction. The value of the end_offset either must be a valid offset into a
bytecodes array of the same method_info structure to an opcode of an
instruction, or must be equal to the method’s bytecode count, the length of the
bytecodes array of the method_info structure. The value of the start_offset
must be less than the value of the end_offset.

The start_offset is inclusive and the end_offset is exclusive; that is, the
exception handler must be active while the execution address is within the
interval [start_offset, end_offset).

stop_bit

The stop_bit item indicates whether the active range (try block) of this exception
handler is contained within or is equal to the active range of any succeeding
exception_handler_info structures in this exception_handlers array. At
the Java source level, this indicates whether an active range is nested within
another, or has at least one succeeding exception handler associated with the
same range. The latter occurs when there is at least one succeeding catch block or
a finally block.

The stop_bit item is equal to 1 if the active range does not intersect with a
succeeding exception handler’s active range, and this exception handler is the last
handler applicable to the active range. It is equal to 0 if the active range is
contained within the active range of another exception handler, or there is at least
one succeeding handler applicable to the same active range.

exception_handler_info {
u2 start_offset
u2 bitfield {

bit[1] stop_bit
bit[15] active_length

}
u2 handler_offset
u2 catch_type_index

}

Chapter 6 The CAP File Format 6-37

The stop_bit provides an optimization to be used during the interpretation of
the athrow bytecode. As the interpreter searches for an appropriate exception
handler, it may terminate the search of the exception handlers in this Method
Component under the following conditions:

■ the location of the current program counter is less than the end_offset of this
exception handler, and

■ the stop_bit of this exception handler is equal to 1.

When these conditions are satisfied it is guaranteed that none of the succeeding
exception handlers in this Method Component will contain an active range
appropriate for the current exception.

In CODE EXAMPLE 6-1, the stop_bit item is set for both the third and fourth
handlers.

handler_offset

The handler_offset item represents a byte offset into the info item of the
Method Component. It indicates the start of the exception handler. At the Java
source level, this is equivalent to the beginning of a catch or finally block. The
value of the item must be a valid offset into a bytecodes array of a method_info
structure to an opcode of an instruction, and must be less than the value of the
method’s bytecode count.

catch_type_index

If the value of the catch_type_index item is non-zero, it must be a valid index
into the constant_pool[] array of the Constant Pool Component (Section 6.7,
“Constant Pool Component” on page 6-14). The constant_pool[] entry at that
index must be a CONSTANT_Classref_info structure, representing the class of
the exception caught by this exception_handlers array entry.

If the exception_handlers table entry represents a finally block, the value of
the catch_type_index item is zero. In this case the exception handler is called
for all exceptions that are thrown within the start_offset and end_offset
range.

The order of constants in the constant pool is constrained such that all entries
referenced by catch_type_index items that represent catch block (not finally
blocks) are located at non-zero entries.

6.9.2 method_info
The method_info structure is defined as follows:

method_info {
method_header_info method_header
u1 bytecodes[]

}

6-38 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The items in the method_info structure are as follows:

method_header

The method_header item represents either a method_header_info or an
extended_method_header_info structure:

The items of the method_header_info and extended_method_header_info
structures are as follows:

flags

The flags item is a mask of modifiers defined for this method. Valid flag
values are shown in the following table.

The value of the ACC_EXTENDED flag must be one if the method_header is
represented by an extended_method_header_info structure. Otherwise the
value must be zero.

The value of the ACC_ABSTRACT flag must be one if this method is defined as
abstract. In this case the bytecodes array must be empty. If this method is not
abstract the value of the ACC_ABSTRACT flag must be zero.

All other flag values are reserved. Their values must be zero.

padding

method_header_info {
u1 bitfield {

bit[4] flags
bit[4] max_stack

}
u1 bitfield {

bit[4] nargs
bit[4] max_locals

}
}

extended_method_header_info {
u1 bitfield {

 bit[4] flags
 bit[4] padding

}
u1 max_stack
u1 nargs
u1 max_locals

}

TABLE 6-13 CAP File Method Flags

Flags Values

ACC_EXTENDED 0x8

ACC_ABSTRACT 0x4
Chapter 6 The CAP File Format 6-39

The padding item has the value of zero. This item is only defined for the
extended_method_header_info structure.

max_stack

The max_stack item indicates the maximum number of 16-bit cells required on
the operand stack during execution of this method.

Stack entries of type int are represented in two 16-bit cells, while all others are
represented in one 16-bit cell.

nargs

The nargs item indicates the number of 16-bit cells required to represent the
parameters passed to this method, including the this pointer if this method is a
virtual method.

Parameters of type int are represented in two 16-bit cells, while all others are
represented in one 16-bit cell.

max_locals

The max_locals item indicates the number of 16-bit cells required to represent
the local variables declared by this method, not including the parameters passed
to this method on invocation.1

Local variables of type int are represented in two 16-bit cells, while all others are
represented in one 16-bit cell. If an entry in the local variables array of the stack
frame is reused to store more than one local variable (for example, local variables
from separate scopes), the number of cells required for storage is two if one or
more of the local variables is of type int.

bytecodes[]

The bytecodes item represents an array of Java Card bytecodes that implement
this method. Valid instructions are defined in Chapter 7, “Java Card Virtual
Machine Instruction Set.” The impdep1 and impdep2 bytecodes cannot be
present in the bytecodes array item.

If this method is abstract the bytecodes item must contain zero elements.

1. Unlike in Java Card CAP files, in Java class files the max_locals item includes both the local variables declared
by the method and the parameters passed to the method.
6-40 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

6.10 Static Field Component
The Static Field Component contains all of the information required to create and
initialize an image of all of the static fields defined in this package, referred to as the
static field image. Offsets to particular static fields are offsets into the static field
image, not the Static Field Component.

Final static fields of primitive types are not represented in the static field image.
Instead these compile-time constants must be placed in line in Java Card technology-
based instructions (“Java Card instructions”).

The Static Field Component includes all information required to initialize classes. In
the Java virtual machine a class is initialized by executing its <clinit> method. In
the Java Card virtual machine the functionality of <clinit> methods is represented
in the Static Field Component as array initialization data and non-default values of
primitive types data. Section 2.2.4.6, “Class Initialization” on page 2-11 contains a
description of the subset of <clinit> functionality supported in the Java Card
virtual machine.

The Static Field Component does not reference any other component in this CAP file.
The Constant Pool Component (Section 6.7, “Constant Pool Component” on
page 6-14), Export Component (Section 6.12, “Export Component” on page 6-47),
Descriptor Component (Section 6.13, “Descriptor Component” on page 6-49), and
Debug Component (Section 6.14, “Debug Component” on page 6-57) reference fields
in the static field image defined by the Static Field Component.

The ordering constraints, or segments, associated with a static field image are shown
in TABLE 6-14. Reference types occur first in the image. Arrays initialized through
Java <clinit> methods occur first within the set of reference types. Primitive types
occur last in the image, and primitive types initialized to non-default values occur
last within the set of primitive types.

TABLE 6-14 Segments of a Static Field Image

category segment content

reference
types

1 arrays of primitive types initialized by <clinit>
methods

2 reference types initialized to null, including
arrays

primitive types 3 primitive types initialized to default values

4 primitive types initialized to non-default values
Chapter 6 The CAP File Format 6-41

The number of bytes used to represent each field type in the static field image is
shown in the following table.

The static_field_component structure is defined as:

The items in the static_field_component structure are as follows:

tag

The tag item has the value COMPONENT_StaticField (8).

size

The size item indicates the number of bytes in the static_field_component
structure, excluding the tag and size items. The value of the size item must be
greater than zero.

image_size

The image_size item indicates the number of bytes required to represent the
static fields defined in this package, excluding final static fields of primitive types.
This value is the number of bytes in the static field image. The number of bytes
required to represent each field type is shown in TABLE 6-15.

The value of the image_size item does not include the number of bytes require
to represent the initial values of array instances enumerated in the Static Field
Component.

The value of the image_size is defined as:

TABLE 6-15 Static Field Sizes

Type Bytes

boolean 1

byte 1

short 2

int 4

reference, including arrays 2

static_field_component {
u1 tag
u2 size
u2 image_size
u2 reference_count
u2 array_init_count
array_init_info array_init[array_init_count]
u2 default_value_count
u2 non_default_value_count
u1 non_default_values[non_default_values_count]

}

6-42 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

reference_count

The reference_count item indicates the number of reference type static fields
defined in this package. This is the number of fields represented in segments 1
and 2 of the static field image as described in TABLE 6-14.

The value of the reference_count item may be 0 if no reference type fields are
defined in this package. Otherwise it must be equal to the number of reference
type fields defined.

array_init_count

The array_init_count item indicates the number of elements in the
array_init array. This is the number of fields represented in segment 1 of the
static field image as described in TABLE 6-14. It represents the number of arrays
initialized in all of the <clinit> methods in this package.

If this CAP file defines a library package the value of array_init_count must
be zero.

array_init[]

The array_init item represents an array of array_init_info structures that
specify the initial array values of static fields of arrays of primitive types. These
initial values are indicated in Java <clinit> methods. The array_init_info
structure is defined as:

The items in the array_init_info structure are defined as follows:

type

The type item indicates the type of the primitive array. Valid values are shown
in the following table.

image_size =
reference_count * 2 +
default_value_count +
non_default_value_count.

array_init_info {
u1 type
u2 count
u1 values[count]

}

TABLE 6-16 Array Types

Type Value

boolean 2

byte 3

short 4

int 5
Chapter 6 The CAP File Format 6-43

count

The count item indicates the number of bytes in the values array. It does not
represent the number of elements in the static field array (referred to as length
in the Java programming language), since the values array is an array of bytes
and the static field array may be a non-byte type. The Java programming
language length of the static field array is equal to the count item divided by
the number of bytes required to represent the static field type (TABLE 6-15)
indicated by the type item.

values

The values item represents a byte array containing the initial values of the
static field array. The number of entries in the values array is equal to the size
in bytes of the type indicated by the type item. The size in bytes of each type
is shown in TABLE 6-15.

default_value_count

The default_value_count item indicates the number of bytes required to
initialize the set of static fields represented in segment 3 of the static field image
as described in TABLE 6-14. These static fields are primitive types initialized to
default values. The number of bytes required to initialize each static field type is
equal to the size in bytes of the type as shown in TABLE 6-15.

non_default_value_count

The non_default_value_count item represents the number bytes in the
non_default_values array. This value is equal to the number of bytes in
segment 4 of the static field image as described in TABLE 6-14. These static fields
are primitive types initialized to non-default values.

non_default_values[]

The non_default_values item represents an array of bytes of non-default
initial values. This is the exact image of segment 4 of the static field image as
described in TABLE 6-14. The number of entries in the non_default_values
array for each static field type is equal to the size in bytes of the type as shown in
TABLE 6-15.

The value of a boolean type is 1 to represent true and 0 to represent false.

6.11 Reference Location Component
The Reference Location Component represents lists of offsets into the info item of the
Method Component (Section 6.9, “Method Component” on page 6-35) to items that
contain indices into the constant_pool[] array of the Constant Pool Component
(Section 6.7, “Constant Pool Component” on page 6-14). This includes all constant
6-44 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

pool index operands of instructions, and all non-zero catch_type_index items of
the exception_handlers array. The catch_type_index items that have the
value of 0 are not included since they represent finally blocks instead of particular
exception classes.

Some of the constant pool indices are represented in one-byte values while others are
represented in two-byte values. Operands of getfield_T and putfield_T
instructions are one-byte constant pool indices. All other indices in a Method
Component are two-byte values.

The Reference Location Component is not referenced by any other component in this
CAP file.

The Reference Location Component structure is defined as:

The items of the reference_location_component structure are as follows:

tag

The tag item has the value COMPONENT_ReferenceLocation (9).

size

The size item indicates the number of bytes in the
reference_location_component structure, excluding the tag and size
items. The value of the size item must be greater than zero.

byte_index_count

The byte_index_count item represents the number of elements in the
offsets_to_byte_indices array.

offsets_to_byte_indices[]

The offsets_to_byte_indices item represents an array of 1-byte jump offsets
into the info item of the Method Component to each 1-byte constant_pool[]
array index. Each entry represents the number of bytes (or distance) between the
current index to the next. If the distance is greater than or equal to 255 then there
are n entries equal to 255 in the array, where n is equal to the distance divided by
255. The nth entry of 255 is followed by an entry containing the value of the
distance modulo 255.

reference_location_component {
u1 tag
u2 size
u2 byte_index_count
u1 offsets_to_byte_indices[byte_index_count]
u2 byte2_index_count
u1 offsets_to_byte2_indices[byte2_index_count]

}

Chapter 6 The CAP File Format 6-45

An example of the jump offsets in an offsets_to_byte_indices array is
shown in the following table.

All 1-byte constant_pool[] array indices in the Method Component must be
represented in offsets_to_byte_indices array.

byte2_index_count

The byte2_index_count item represents the number of elements in the
offsets_to_byte2_indices array.

offsets_to_byte2_indices[]

The offsets_to_byte2_indices item represents an array of 1-byte jump
offsets into the info item of the Method Component to each 2-byte
constant_pool[] array index. Each entry represents the number of bytes (or
distance) between the current index to the next. If the distance is greater than or
equal to 255 then there are n entries equal to 255 in the array, where n is equal to
the distance divided by 255. The nth entry of 255 is followed by an entry
containing the value of the distance modulo 255.

An example of the jump offsets in an offsets_to_byte_indices array is
shown in TABLE 6-17. The same example applies to the
offsets_to_byte2_indices array if the instructions are changed to those with
2-byte constant_pool[] array indices.

All 2-byte constant_pool[] array indices in the Method Component must be
represented in offsets_to_byte2_indices array, including those represented
in catch_type_index items of the exception_handler_info array.

TABLE 6-17 One-byte Reference Location Example

Instruction
Offset to
Operand Jump Offset

getfield_a 0 10 10

putfield_b 2 65 55

255

255

getfield_s 1 580 5

255

putfield_a 0 835 0

getfield_i 3 843 8
6-46 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

6.12 Export Component
The Export Component lists all static elements in this package that may be imported
by classes in other packages. Instance fields and virtual methods are not represented
in the Export Component.

If this CAP file does not include an Applet Component (Section 6.5, “Applet
Component” on page 6-12), the Export Component contains an entry for each public
class and public interface defined in this package. Furthermore, for each public class
there is an entry for each public or protected static field defined in that class, for
each public or protected static method defined in that class, and for each public or
protected constructor defined in that class. Final static fields of primitive types
(compile-time constants) are not included.

If this CAP file includes an Applet Component (Section 6.5, “Applet Component” on
page 6-12), the Export Component includes entries only for all public interfaces that
are shareable.1 An interface is shareable if and only if it is the
javacard.framework.Shareable interface or implements (directly or indirectly)
that interface.

Elements in the Export Component reference elements in the Class Component
(Section 6.8, “Class Component” on page 6-21), Method Component (Section 6.9,
“Method Component” on page 6-35), and Static Field Component (Section 6.10,
“Static Field Component” on page 6-41). No other component in this CAP file
references the Export Component.

The Export Component is represented by the following structure:

The items of the export_component structure are as follows:

tag

The tag item has the value COMPONENT_Export (10).

size

1. The restriction on shareable functionality is imposed by the firewall as defined in the Runtime Environment
Specification, Java Card Platform, Version 2.2.2.

export_component {
u1 tag
u2 size
u1 class_count
class_export_info {

u2 class_offset
u1 static_field_count
u1 static_method_count
u2 static_field_offsets[static_field_count]
u2 static_method_offsets[static_method_count]

} class_exports[class_count]
}

Chapter 6 The CAP File Format 6-47

The size item indicates the number of bytes in the export_component
structure, excluding the tag and size items. The value of the size item must be
greater than zero.

class_count

The class_count item represents the number of entries in the class_exports
table. The value of the class_count item must be greater than zero.

class_exports[]

The class_exports item represents a variable-length table of
class_export_info structures. If this package is a library package, the table
contains an entry for each of the public classes and public interfaces defined in
this package. If this package is an applet package, the table contains an entry for
each of the public shareable interfaces defined in this package.

An index into the table to a particular class or interface is equal to the token value
of that class or interface (Section 4.3.7.2, “Classes and Interfaces” on page 4-8).
The token value is published in the Export file (Section 5.7, “Classes and
Interfaces” on page 5-8) of this package.

The items in the class_export_info structure are:

class_offset

The class_offset item represents a byte offset into the info item of the Class
Component (Section 6.8, “Class Component” on page 6-21). If this package
defines a library package, the item at that offset must be either an
interface_info or a class_info structure. The interface_info or
class_info structure at that offset must represent the exported class or
interface.

If this package defines an applet package, the item at the class_offset in the
info item of the Class Component must be an interface_info structure. The
interface_info structure at that offset must represent the exported,
shareable interface. In particular, the ACC_SHAREABLE flag of the
interface_info structure must be equal to 1.

static_field_count

The static_field_count item represents the number of elements in the
static_field_offsets array. This value indicates the number of public and
protected static fields defined in this class, excluding final static fields of
primitive types.

If the class_offset item represents an offset to an interface_info
structure, the value of the static_field_count item must be zero.

static_method_count
6-48 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The static_method_count item represents the number of elements in the
static_method_offsets array. This value indicates the number of public and
protected static methods and constructors defined in this class.

If the class_offset item represents an offset to an interface_info
structure, the value of the static_method_count item must be zero.

static_field_offsets[]

The static_field_offsets item represents an array of 2-byte offsets into
the static field image defined by the Static Field Component (Section 6.10,
“Static Field Component” on page 6-41). Each offset must be to the beginning
of the representation of the exported static field.

An index into the static_field_offsets array must be equal to the token
value of the field represented by that entry. The token value is published in the
Export file (Section 5.9, “Methods” on page 5-13) of this package.

static_method_offsets[]

The static_method_offsets item represents a table of 2-byte offsets into
the info item of the Method Component (Section 6.9, “Method Component” on
page 6-35). Each offset must be to the beginning of a method_info structure.
The method_info structure must represent the exported static method or
constructor.

An index into the static_method_offsets array must be equal to the token
value of the method represented by that entry.

6.13 Descriptor Component
The Descriptor Component provides sufficient information to parse and verify all
elements of the CAP file. It references, and therefore describes, elements in the
Constant Pool Component (Section 6.7, “Constant Pool Component” on page 6-14),
Class Component (Section 6.8, “Class Component” on page 6-21), Method
Component (Section 6.9, “Method Component” on page 6-35), and Static Field
Component (Section 6.10, “Static Field Component” on page 6-41). No components
in the CAP file reference the Descriptor Component.

The Descriptor Component is represented by the following structure:

The items of the descriptor_component structure are as follows:

descriptor_component {
u1 tag
u2 size
u1 class_count
class_descriptor_info classes[class_count]
type_descriptor_info types

}

Chapter 6 The CAP File Format 6-49

tag

The tag item has the value COMPONENT_Descriptor (11).

size

The size item indicates the number of bytes in the descriptor_component
structure, excluding the tag and size items. The value of the size item must be
greater than zero.

class_count

The class_count item represents the number of entries in the classes table.

classes[]

The classes item represents a table of variable-length
class_descriptor_info structures. Each class and interface defined in this
package is represented in the table.

types

The types item represents a type_descriptor_info structure. This structure
lists the set of field types and method signatures of the fields and methods
defined or referenced in this package. Those referenced are enumerated in the
Constant Pool Component.

6.13.1 class_descriptor_info
The class_descriptor_info structure is used to describe a class or interface
defined in this package:

The items of the class_descriptor_info structure are as follows:

token

The token item represents the class token (Section 4.3.7.2, “Classes and
Interfaces” on page 4-8) of this class or interface. If this class or interface is
package-visible it does not have a token assigned. In this case the value of the
token item must be 0xFF.

access_flags

class_descriptor_info {
u1 token
u1 access_flags
class_ref this_class_ref
u1 interface_count
u2 field_count
u2 method_count
class_ref interfaces [interface_count]
field_descriptor_info fields[field_count]
method_descriptor_info methods[method_count]

}

6-50 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The access_flags item is a mask of modifiers used to describe the access
permission to and properties of this class or interface. The access_flags
modifiers for classes and interfaces are shown in the following table.

The class access and modifier flags defined in the table above are a subset of those
defined for classes and interfaces in a Java class file. They have the same meaning,
and are set under the same conditions, as the corresponding flags in a Java class
file.

All other flag values are reserved. Their values must be zero.

this_class_ref

The this_class_ref item is a class_ref structure indicating the location of
the class_info structure in the Class Component (Section 6.8, “Class
Component” on page 6-21). The class_ref structure is defined as part of the
CONSTANT_Classref_info structure (Section 6.7.1, “CONSTANT_Classref” on
page 6-16).

interface_count

The interface_count item represents the number of entries in the interfaces
array. For an interface, interface_count is always set to zero.

field_count

The field_count item represents the number of entries in the fields array. If this
class_descriptor_info structure represents an interface, the value of the
field_count item is equal to zero.

Static final fields of primitive types are not represented as fields in a CAP file, but
instead these compile-time constants are placed inline in bytecode sequences. The
field_count item does not include static final field of primitive types defined
by this class.

method_count

The method_count item represents the number of entries in the methods array.

interfaces[]

TABLE 6-18 CAP File Class Descriptor Flags

Name Value

ACC_PUBLIC 0x01

ACC_FINAL 0x10

ACC_INTERFACE 0x40

ACC_ABSTRACT 0x80
Chapter 6 The CAP File Format 6-51

The interfaces item represents an array of interfaces implemented by this
class. The elements in the array are class_ref structures indicating the location
of the interface_info structure in the Class Component (Section 6.8, “Class
Component” on page 6-21). The class_ref structure is defined as part of the
CONSTANT_Classref_info structure (Section 6.7.1, “CONSTANT_Classref” on
page 6-16).

fields[]

The fields item represents an array of field_descriptor_info structures.
Each field declared by this class is represented in the array, except static final
fields of primitive types. Inherited fields are not included in the array.

methods[]

The methods item represents an array of method_descriptor_info structures.
Each method declared or defined by this class or interface is represented in the
array. For a class, inherited methods are not included in the array. For an
interface, inherited methods are included in the array.

6.13.2 field_descriptor_info
The field_descriptor_info structure is used to describe a field defined in this
package:

The items of the field_descriptor_info structure are as follows:

token

The token item represents the token of this field. If this field is private or
package-visible static field it does not have a token assigned. In this case the
value of the token item must be 0xFF.

access_flags

field_descriptor_info {
u1 token
u1 access_flags
union {

static_field_ref static_field
{

class_ref class
u1 token

} instance_field
} field_ref
union {

u2 primitive_type
u2 reference_type

} type
}

6-52 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The access_flags item is a mask of modifiers used to describe the access
permission to and properties of this field. The access_flags modifiers for fields
are shown in the following table.

The field access and modifier flags defined in the table above are a subset of those
defined for fields in a Java class file. They have the same meaning, and are set
under the same conditions, as the corresponding flags in a Java class file.

All other flag values are reserved. Their values must be zero.

field_ref

The field_ref item represents a reference to this field. If the ACC_STATIC flag
is equal to 1, this item represents a static_field_ref as defined in the
CONSTANT_StaticFieldref structure (Section 6.7.3,
“CONSTANT_StaticFieldref and CONSTANT_StaticMethodref” on page 6-19).

If the ACC_STATIC flag is equal to 0, this item represents a reference to an
instance field. It contains a class_ref item and an instance field token item.
These items are defined in the same manner as in the
CONSTANT_InstanceFieldref structure (Section 6.7.2,
“CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref” on page 6-18).

type

The type item indicates the type of this field. directly or indirectly. If this field is
a primitive type (boolean, byte, short, or int) the high bit of this item is equal
to 1, otherwise the high bit of this item is equal to 0.

primitive_type

TABLE 6-19 CAP File Field Descriptor Flags

Name Value

ACC_PUBLIC 0x01

ACC_PRIVATE 0x02

ACC_PROTECTED 0x04

ACC_STATIC 0x08

ACC_FINAL 0x10
Chapter 6 The CAP File Format 6-53

The primitive_type item represents the type of this field using the values in
the table below. As noted above, the high bit of the primitive_type item is
equal to 1.

reference_type

The reference_type item represents a 15-bit offset into the
type_descriptor_info structure. The item at the offset must represent the
reference type of this field. As noted above, the high bit of the
reference_type item is equal to 0.

6.13.3 method_descriptor_info
The method_descriptor_info structure is used to describe a method defined in
this package. This structure contains sufficient information to locate and parse the
methods in the Method Component, while the Method Component does not.

The items of the method_descriptor_info structure are as follows:

token

The token item represents the static method token (Section 4.3.7.4, “Static
Methods and Constructors” on page 4-8) or virtual method token (Section 4.3.7.6,
“Virtual Methods” on page 4-9) or interface method token (Section 4.3.7.7,
“Interface Methods” on page 4-10) of this method. If this method is a private or
package-visible static method, a private or package-visible constructor, or a
private virtual method it does not have a token assigned. In this case the value of
the token item must be 0xFF.

access_flags

TABLE 6-20 Primitive Type Descriptor Values

Data Type Value

boolean 0x0002

byte 0x0003

short 0x0004

int 0x0005

method_descriptor_info {
u1 token
u1 access_flags
u2 method_offset
u2 type_offset
u2 bytecode_count
u2 exception_handler_count
u2 exception_handler_index

}

6-54 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The access_flags item is a mask of modifiers used to describe the access
permission to and properties of this method. The access_flags modifiers for
methods are shown in the following table.

The method access and modifier flags defined in the table above, except the
ACC_INIT flag, are a subset of those defined for methods in a Java class file.
They have the same meaning, and are set under the same conditions, as the
corresponding flags in a Java class file.

The ACC_INIT flag is set if the method descriptor identifies a constructor
methods. In Java a constructor method is recognized by its name, <init>, but in
Java Card systems, the name is replaced by a token. As in the Java verifier, these
methods require special checks by the verifier for the Java Card platform (“Java
Card verifier”).

All other flag values are reserved. Their values must be zero.

method_offset

If the class_descriptor_info structure that contains this
method_descriptor_info structure represents a class, the method_offset
item represents a byte offset into the info item of the Method Component
(Section 6.9, “Method Component” on page 6-35). The element at that offset must
be the beginning of a method_info structure. The method_info structure must
represent this method.

If the class_descriptor_info structure that contains this
method_descriptor_info structure represents an interface, the value of the
method_offset item must be zero.

type_offset

The type_offset item must be a valid offset into the type_descriptor_info
structure. The type described at that offset represents the signature of this
method.

TABLE 6-21 CAP File Method Descriptor Flags

Name Value

ACC_PUBLIC 0x01

ACC_PRIVATE 0x02

ACC_PROTECTED 0x04

ACC_STATIC 0x08

ACC_FINAL 0x10

ACC_ABSTRACT 0x40

ACC_INIT 0x80
Chapter 6 The CAP File Format 6-55

bytecode_count

The bytecode_count item represents the number of bytecodes in this method.
The value is equal to the length of the bytecodes array item in the method_info
structure in the method component (Section 6.9, “Method Component” on
page 6-35) of this method.

exception_handler_count

The exception_handler_count item represents the number of exception
handlers implemented by this method.

exception_handler_index

The exception_handler_index item represents the index to the first
exception_handlers table entry in the method component (Section 6.9,
“Method Component” on page 6-35) implemented by this method. Succeeding
exception_handlers table entries, up to the value of the
exception_handler_count item, are also exception handlers implemented by
this method.

The value of the exception_handler_index item is 0 if the value of the
exception_handler_count item is 0.

6.13.4 type_descriptor_info
The type_descriptor_info structure represents the types of fields and signatures
of methods defined in this package:

The type_descriptor_info structure contains the following elements:

constant_pool_count

The constant_pool_count item represents the number of entries in the
constant_pool_types array. This value is equal to the number of entries in the
constant_pool array of the Constant Pool Component (Section 6.7, “Constant
Pool Component” on page 6-14).

constant_pool_types[]

The constant_pool_types item is an array that describes the types of the fields
and methods referenced in the Constant Pool Component. This item has the same
number of entries as the constant_pool[] array of the Constant Pool
Component, and each entry describes the type of the corresponding entry in the
constant_pool[] array.

type_descriptor_info {
u2 constant_pool_count
u2 constant_pool_types[constant_pool_count]
type_descriptor type_desc[]

}

6-56 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

If the corresponding constant_pool[] array entry represents a class or
interface reference, it does not have an associated type. In this case the value of
the entry in the constant_pool_types array item is 0xFFFF.

If the corresponding constant_pool[] array entry represents a field or method,
the value of the entry in the constant_pool_types array is an offset into the
type_descriptor_info structure. The element at that offset must describe the
type of the field or the signature of the method.

type_desc[]

The type_desc item represents a table of variable-length type_descriptor
structures. These descriptors represent the types of fields and signatures of
methods. For a description of the type_descriptor structure, see Section 6.8.1,
“type_descriptor” on page 6-23.

6.14 Debug Component
This section specifies the format for the Debug Component. The Debug Component
contains all the metadata necessary for debugging a package on a suitably
instrumented Java Card virtual machine. It is not required for executing Java Card
programs in a non-debug environment.

The Debug Component references the Class Component (Section 6.8, “Class
Component” on page 6-21), Method Component (Section 6.9, “Method Component”
on page 6-35), and Static Field Component (Section 6.10, “Static Field Component”
on page 6-41). No components reference the Debug Component.

The Debug Component is represented by the following structure:

The items in the debug_component structure are defined as follows:

tag

The tag item has the value COMPONENT_Debug (12).

size

The number of bytes in the component, excluding the tag and size items. The
value of size must be greater than zero.

debug_component {
u1 tag
u2 size
u2 string_count
utf8_info strings_table[string_count]
u2 package_name_index
u2 class_count
class_debug_info classes[class_count]

}

Chapter 6 The CAP File Format 6-57

string_count

The number of strings in the strings_table[] table.

strings_table[]

A table of all the strings used in this component. Various items that occur through
this component represent unsigned two-byte indices into this table.

Each entry in the table is a utf8_info structure. A utf8_info structure is
represented by the following structure:

The items in the utf8_info structure are defined as follows:

length

The number of bytes in the string.

bytes

The bytes of the string in UTF-8 format.

package_name_index

Contains an index into the strings_table[] item. The strings_table[]
item entry referenced by this index must contain the fully-qualified name of the
package in this CAP file.

class_count

The number of classes in the classes table.

classes[]

Contains a single class_debug_info[] structure for each class in this package.

6.14.1 The class_debug_info Structure
The class_debug_info structure contains all of the debugging information for a
class or interface. It also contains tables of debugging information for all its classes’
fields and methods.

utf8_info {
u2 length
u1 bytes[length]

}

class_debug_info {
u2 name_index
u2 access_flags
u2 location
u2 superclass_name_index
u2 source_file_index
u1 interface_count
u2 field_count
u2 method_count
6-58 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The items in the class_debug_info structure are defined as follows:

name_index

Contains an index into the strings_table[] item of the
debug_component structure. The strings_table[] entry at the indexed
location must be the fully-qualified name of this class.

access_flags

A two-byte mask of modifiers that apply to this class. The modifiers are:

The ACC_SHAREABLE flag indicates whether this class or interface is shareable.1 A
class is shareable if it implements (directly or indirectly) the
javacard.framework.Shareable interface. An interface is shareable if it is or
extends (directly or indirectly) the javacard.framework.Shareable interface.

The ACC_REMOTE flag indicates whether this class or interface is remote. The
value of this flag must be one if and only if the class or interface satisfies the
requirements defined in Section 2.2.6.1, “Remote Classes and Remote Interfaces”
on page 2-12.

All other class access and modifier flags are defined in the same way and with the
same restrictions as described in The Java Virtual Machine Specification.

location

The byte offset of the class_info or interface_info record for this class or
interface into the info item of the Class Component (Section 6.8, “Class
Component” on page 6-21).

superclass_name_index

u2 interface_names_indexes[interface_count]
field_debug_info fields[field_count]
method_debug_info methods[method_count]

}

TABLE 6-22 Class Access and Modifier Flags

Modifier Value

ACC_PUBLIC 0x0001

ACC_FINAL 0x0010

ACC_REMOTE 0x0020

ACC_INTERFACE 0x0200

ACC_ABSTRACT 0x0400

ACC_SHAREABLE 0x0800

1. The ACC_SHAREABLE flag is defined to enable Java Card virtual machines to implement the firewall
restrictions defined by the Runtime Environment Specification, Java Card Platform, Version 2.2.2.
Chapter 6 The CAP File Format 6-59

Contains an index into the strings_table[] item of the debug_component
structure. The strings_table[] entry at the indexed location must be the fully-
qualified name of the superclass of this class or the string “null” if the class has
no superclass.

source_file_index

Contains the index into the strings_table[] item of the debug_component
structure. The strings_table[] entry at the indexed location must be the name
of the source file in which this class is defined.

interface_count

The number of indexes in the interface_names_indexes[] table.

field_count

The number of field_debug_info structures in the fields[] table.

method_count

The number of method_debug_info structures in the methods[] table.

interface_names_indexes[]

Contains the indexes into the strings_table[] item of the debug_component
structure. The strings_table[] entry at each indexed location must be the
name of an interface implemented by this class. There must be an index value
present for every interface implemented by this class, including interfaces
implemented by superclasses of this class and superinterfaces of the implemented
interfaces.

If ACC_INTERFACE is set, the strings_table[] entry at each indexed location
must be the name of a super interface directly or indirectly extended by this
interface. There must be an index value present for every super interface directly
or indirectly extended by this interface.

fields[]

Contains field_debug_info structures for all the fields declared by this class,
including static final fields of primitive types. Inherited fields are not included in
this array.

methods[]

Contains method_debug_info structures for all the methods declared or defined
in this class. Inherited methods are not included in this array.
6-60 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

6.14.1.1 The field_debug_info Structure

The field_debug_info structure describes a field in a class. It can describe either
an instance field, a static field, or a constant (primitive final static) field. The contents
union will have the form of a token_var if the field is an instance field, a
location_var if it is a static field, or a const_value if it is a constant.

The field_debug_info structure is defined as follows:

The items in the field_debug_info structure are defined as follows:

name_index

Contains an index into the strings_table[] item of the debug_component
structure. The strings_table[] entry at the indexed location must be the
simple (meaning, not fully-qualified) name of the field (for example, “applets”).

descriptor_index

Contains an index into the strings_table[] item of the debug_component
structure. The strings_table[] entry at the indexed location must be the type
of the field. Class types are fully-qualified (for example,
“[Ljavacard/framework/Applet;”).

access_flags

A two-byte mask of modifiers that apply to this field.

field_debug_info {
u2 name_index
u2 descriptor_index
u2 access_flags
union {

{
u1 pad1
u1 pad2
u1 pad3
u1 token

} token_var
{

u2 pad
u2 location

} location_var
u4 const_value

} contents
}

TABLE 6-23 Field Access and Modifier Flags

Modifier Value

ACC_PUBLIC 0x0001

ACC_PRIVATE 0x0002
Chapter 6 The CAP File Format 6-61

The above field access and modifier flags are defined in the same way and with
the same restrictions as described in the Java Virtual Machine Specification.

contents

A field_debug_info structure can describe an instance field, a static field, or a
static final field (a constant). Constants can be either primitive data or arrays of
primitive data. Depending on the kind of field described, the contents item is
interpreted in different ways. The kind and type of the field can be determined by
examining the field’s descriptor and access flags.

token_var

If the field is an instance field, this value is the instance field token of the field.
The pad1, pad2, and pad3 items are padding only; their values should be
ignored.

location_var

If the field is a non-final static field or a final static field with an array type (a
constant array), this value is the byte offset of the location for this field in the
static field image defined by the Static Field Component (Section 6.10, “Static
Field Component” on page 6-41). The pad item is padding only; its value
should be ignored.

const_value

If the field is a final static field of type byte, boolean, short, or int, this
value is interpreted as a signed 32-bit constant.

6.14.1.2 The method_debug_info Structure

The method_debug_info structure describes a method of a class. It can describe
methods that are either virtual or non-virtual (static or initialization methods). The
structure is defined as follows:

ACC_PROTECTED 0x0004

ACC_STATIC 0x0008

ACC_FINAL 0x0010

method_debug_info {
u2 name_index
u2 descriptor_index
u2 access_flags
u2 location
u1 header_size
u2 body_size

TABLE 6-23 Field Access and Modifier Flags

Modifier Value
6-62 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The items in the method_debug_info structure are defined as follows:

name_index

Contains an index into the strings_table[] item of the debug_component
structure. The strings_table[] entry at the indexed location must be the
simple (meaning, not fully-qualified) name of the method (for example,
“lookupAID”).

descriptor_index

Contains an index into the strings_table[] item of the debug_component
structure. The strings_table[] entry at the indexed location must be the
argument and return types of the method (meaning, the signature without the
method name). Class types are fully-qualified (for example,
“([BSB)Ljavacard/framework/AID;”)

access_flags

A two-byte mask of modifiers that apply to this method.

The ACC_NATIVE flag is only valid for methods of a package located in the card
mask. It cannot be used for methods contained in a CAP file.

All other method access and modifier flags are defined in the same way and with
the same restrictions as described in The Java Virtual Machine Specification.

location

A byte offset of the method_info structure for this method into the info item of
the Method Component (Section 6.9, “Method Component” on page 6-35).
Abstract methods have a location of zero.

u2 variable_count
u2 line_count
variable_info variable_table[variable_count]
line_info line_table[line_count]

}

TABLE 6-24 Method Modifier Flags

Modifier Value

ACC_PUBLIC 0x0001

ACC_PRIVATE 0x0002

ACC_PROTECTED 0x0004

ACC_STATIC 0x0008

ACC_FINAL 0x0010

ACC_NATIVE 0x0100

ACC_ABSTRACT 0x0400
Chapter 6 The CAP File Format 6-63

header_size

The size in bytes of the header of the method. Abstract methods have a
header_size of zero.

body_size

The size in bytes of the body of the method, not including the method header.
Abstract methods have a body_size of zero.

variable_count

The number of variable_info entries in the variable_table[] item.
Abstract methods have a variable_count of zero.

line_count

The number of line_info entries in the line_table[] item. Abstract methods
have a line_count of zero.

variable_table[]

Contains the variable_info structures for all variables in this method.

The variable_info structure describes a single local variable of a method. It
indicates the index into the local variables of the current frame at which the local
variable can be found, as well as the name and type of the variable. It also
indicates the range of bytecodes within which the variable has a value.

The items in the variable_info structure are defined as follows:

index

The index of the variable in the local stack frame, as used in load and store
bytecodes. If the variable at index is of type int, it occupies both index and
index + 1.

name_index

Contains an index into the strings_table[] item of the debug_component
structure. The strings_table[] entry at the indexed location must be the
name of the local variable, (for example, “applets”).

descriptor_index

variable_info {
u1 index
u2 name_index
u2 descriptor_index
u2 start_pc
u2 length

}

6-64 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Contains an index into the strings_table[] item of the debug_component
structure. The strings_table[] entry at the indexed location must be the
type of the local variable. Class types are fully-qualified (for example,
“[Ljavacard/framework/Applet;”).

start_pc

The index of the first bytecode in which the variable is in-scope and valid.

length

Number of bytecodes in which the variable is in-scope and valid. The value of
start_pc + length will be either the index of the next bytecode after the
valid range, or the first index beyond the end of the bytecode array.

line_table[]

Contains the line_info structures that map bytecode instructions of this
method to lines in the class’s source file.

Each line_info item represents a mapping of a range of bytecode instructions
to a particular line in the source file that contains the method. The range of
instructions is from start_pc to end_pc, inclusive. start_pc and end_pc
represent a zero-based byte offset within the method. The source_line is the
one-based line number in the source file. The structure is defined as follows:

The items in the line_info structure are defined as follows:

start_pc

The byte offset of the first bytecode in the range of instructions.

end_pc

The byte offset of the last operand of the last bytecode in the range of
instructions.

source_line

Line number in the source file.

line_info {
u2 start_pc
u2 end_pc
u2 source_line

}

Chapter 6 The CAP File Format 6-65

6-66 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

CHAPTER 7

Java Card Virtual Machine
Instruction Set

A Java Card virtual machine instruction consists of an opcode specifying the
operation to be performed, followed by zero or more operands embodying values to
be operated upon. This chapter gives details about the format of each Java Card
virtual machine instruction and the operation it performs.

7.1 Assumptions: The Meaning of “Must”
The description of each instruction is always given in the context of Java Card
virtual machine code that satisfies the static and structural constraints of Chapter 6,
“The CAP File Format”.

In the description of individual Java Card virtual machine instructions, we
frequently state that some situation “must” or “must not” be the case: “The value2
must be of type int.” The constraints of Chapter 6 “The CAP File Format” guarantee
that all such expectations will in fact be met. If some constraint (a “must” or “must
not”) in an instruction description is not satisfied at run time, the behavior of the
Java Card virtual machine is undefined.
7-1

7.2 Reserved Opcodes
In addition to the opcodes of the instructions specified later this chapter, which are
used in Java Card CAP files (see Chapter 6, “The CAP File Format”), two opcodes
are reserved for internal use by a Java Card virtual machine implementation. If Sun
Microsystems, Inc. extends the instruction set of the Java Card virtual machine in the
future, these reserved opcodes are guaranteed not to be used.

The two reserved opcodes, numbers 254 (0xfe) and 255 (0xff), have the mnemonics
impdep1 and impdep2, respectively. These instructions are intended to provide
“back doors” or traps to implementation-specific functionality implemented in
software and hardware, respectively.

Although these opcodes have been reserved, they may only be used inside a Java
Card virtual machine implementation. They cannot appear in valid CAP files.

7.3 Virtual Machine Errors
A Java Card virtual machine may encounter internal errors or resource limitations
that prevent it from executing correctly written Java programs. While The Java
Virtual Machine Specification allows reporting and handling of virtual machine
errors, it also states that they cannot ordinarily be handled by application code. This
Virtual Machine Specification for the Java Card Platform, v2.2.2 is more restrictive in
that it does not allow for any reporting or handling of unrecoverable virtual machine
errors at the application code level. A virtual machine error is considered
unrecoverable if further execution could compromise the security or correct
operation of the virtual machine or underlying system software. When an
unrecoverable error occurs, the virtual machine will halt bytecode execution.
Responses beyond halting the virtual machine are implementation-specific policies
and are not mandated in this specification.

In the case where the virtual machine encounters a recoverable error, such as
insufficient memory to allocate a new object, it will throw a SystemException with
an error code describing the error condition. The Virtual Machine Specification for
the Java Card Platform, v2.2.2 cannot predict where resource limitations or internal
errors may be encountered and does not mandate precisely when they can be
reported. Thus, a SystemException may be thrown at any time during the operation
of the Java Card virtual machine.
7-2 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

7.4 Security Exceptions
Instructions of the Java Card virtual machine throw an instance of the class
SecurityException when a security violation has been detected. The Java Card virtual
machine does not mandate the complete set of security violations that can or will
result in an exception being thrown. However, there is a minimum set that must be
supported.

In the general case, any instruction that de-references an object reference must throw
a SecurityException if the context (Section 3.4, “Contexts” on page 3-2) in which the
instruction is executing is different than the owning context (Section 3.4, “Contexts”
on page 3-2) of the referenced object. The list of instructions includes the instance
field get and put instructions, the array load and store instructions, as well as the
arraylength, invokeinterface, invokespecial, invokevirtual, checkcast, instanceof and
athrow instructions.

There are several exceptions to this general rule that allow cross-context use of
objects or arrays. These exceptions are detailed in Chapter 6 of the Runtime
Environment Specification for the Java Card Platform, Version 2.2.2. An important detail
to note is that any cross-context method invocation will result in a context switch
(Section 3.4, “Contexts” on page 3-2).

The Java Card virtual machine may also throw a SecurityException if an instruction
violates any of the static constraints of Chapter 6, “The CAP File Format”. The
Virtual Machine Specification for the Java Card Platform, Version 2.2.2 does not mandate
which instructions must implement these additional security checks, or to what
level. Therefore, a SecurityException may be thrown at any time during the
operation of the Java Card virtual machine.

7.5 The Java Card Virtual Machine
Instruction Set
Java virtual machine instructions are represented in this chapter by entries of the
form shown in TABLE 7-1, an example instruction page, in alphabetical order.
Chapter 7 Java Card Virtual Machine Instruction Set 7-3

Each cell in the instruction format diagram represents a single 8-bit byte. The
instruction’s mnemonic is its name. Its opcode is its numeric representation and is
given in both decimal and hexadecimal forms. Only the numeric representation is
actually present in the Java Card virtual machine code in a CAP file.

Keep in mind that there are “operands” generated at compile time and embedded
within Java Card virtual machine instructions, as well as “operands” calculated at
run time and supplied on the operand stack. Although they are supplied from
several different areas, all these operands represent the same thing: values to be
operated upon by the Java Card virtual machine instruction being executed. By
implicitly taking many of its operands from its operand stack, rather than
representing them explicitly in its compiled code as additional operand bytes,
register numbers, etc., the Java Card virtual machine’s code stays compact.

Some instructions are presented as members of a family of related instructions
sharing a single description, format, and operand stack diagram. As such, a family
of instructions includes several opcodes and opcode mnemonics; only the family
mnemonic appears in the instruction format diagram, and a separate forms line lists

TABLE 7-1 Example Instruction Page

mnemonic
Short description of the instruction.
Format
mnemonic
operand1
operand2
...
Forms
mnemonic = opcode
Stack
..., value1, value2 ->
.../ value3
Description
A longer description detailing constraints on operand stack contents or constant pool
entries, the operation performed, the type of the results, and so on.
Runtime Exception
If any runtime exceptions can be thrown by the execution of an instruction, that
instruction must not throw any runtime exceptions except for instances of System
Exception.
Notes
Commands not strictly part of the specification of an instruction are set aside as notes at
the end of the description.
7-4 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

all member mnemonics and opcodes. For example, the forms line for the sconst_<s>
family of instructions, giving mnemonic and opcode information for the two
instructions in that family (sconst_0 and sconst_1), is

Forms sconst_0 = 3 (0x3),
sconst_1 = 4 (0x4)

In the description of the Java Card virtual machine instructions, the effect of an
instruction’s execution on the operand stack (Section 3.5, “Frames” on page 3-3) of
the current frame (Section 3.5, “Frames” on page 3-3) is represented textually, with
the stack growing from left to right and each word represented separately. Thus,

Stack…, value1, value2 ->
…, result

shows an operation that begins by having a one-word value2 on top of the operand
stack with a one-word value1 just beneath it. As a result of the execution of the
instruction, value1 and value2 are popped from the operand stack and replaced by a
one-word result, which has been calculated by the instruction. The remainder of the
operand stack, represented by an ellipsis (…), is unaffected by the instruction’s
execution.

The type int takes two words on the operand stack. In the operand stack
representation, each word is represented separately using a dot notation:

Stack…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

The Virtual Machine Specification for the Java Card Platform, v2.2.2 does not
mandate how the two words are used to represent the 32-bit int value; it only
requires that a particular implementation be internally consistent.

7.5.1 aaload
Load reference from array

Format

Forms

aaload = 36 (0x24)

Stack

…, arrayref, index ->
…, value

aaload
Chapter 7 Java Card Virtual Machine Instruction Set 7-5

Description

The arrayref must be of type reference and must refer to an array whose components
are of type reference. The index must be of type short. Both arrayref and index are
popped from the operand stack. The reference value in the component of the array
at index is retrieved and pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, aaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
aaload instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the aaload instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.2 aastore
Store into reference array

Format

Forms

aastore = 55 (0x37)

Stack

…, arrayref, index, value ->
…

Description

The arrayref must be of type reference and must refer to an array whose components
are of type reference. The index must be of type short and the value must be of type
reference. The arrayref, index and value are popped from the operand stack. The
reference value is stored as the component of the array at index.

aastore
7-6 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

At runtime the type of value must be confirmed to be assignment compatible with
the type of the components of the array referenced by arrayref. Assignment of a
value of reference type S (source) to a variable of reference type T (target) is allowed
only when the type S supports all of the operations defined on type T. The detailed
rules follow:

■ If S is a class type, then:

■ If T is a class type, then S must be the same class as T, or S must be a subclass
of T;

■ If T is an interface type, then S must implement interface T.

■ If S is an interface type1, then:

■ If T is a class type, then T must be Object (Section 2.2.2.4, “Classes” on
page 2-7);

■ If T is an interface type, T must be the same interface as S or a superinterface of
S.

■ If S is an array type, namely the type SC[], that is, an array of components of type
SC, then:

■ If T is a class type, then T must be Object.

■ If T is an array type, namely the type TC[], an array of components of type TC,
then one of the following must be true:

TC and SC are the same primitive type (Section 3.1, “Data Types and Values”
on page 3-1”).

TC and SC are reference types2 (Section 3.1, “Data Types and Values” on
page 3-1) with type SC assignable to TC, by these rules.

■ If T is an interface type, T must be one of the interfaces implemented by arrays.

Runtime Exceptions

If arrayref is null, aastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
aastore instruction throws an ArrayIndexOutOfBoundsException.

Otherwise, if arrayref is not null and the actual type of value is not assignment
compatible with the actual type of the component of the array, aastore throws an
ArrayStoreException.

Notes

1. When both S and T are arrays of reference types, this algorithm is applied recursively using the types of the
arrays, namely SC and TC. In the recursive call, S, which was SC in the original call, may be an interface type.
This rule can only be reached in this manner. Similarly, in the recursive call,T, which was TC in the original
call, may be an interface type.

2. This version of the Java Card virtual machine does not support multi-dimensional arrays. Therefore, neither
SC or TC can be an array type.
Chapter 7 Java Card Virtual Machine Instruction Set 7-7

In some circumstances, the aastore instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.3 aconst_null
Push null

Format

Forms

aconst_null = 1 (0x1)

Stack

… ->
…, null

Description

Push the null object reference onto the operand stack.

7.5.4 aload
Load reference from local variable

Format

Forms

aload = 21 (0x15)

Stack

… ->
…, objectref

aconst_null

aload

index
7-8 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (Section 3.5, “Frames” on page 3-3). The local variable at index
must contain a reference. The objectref in the local variable at index is pushed onto
the operand stack.

Notes

The aload instruction cannot be used to load a value of type returnAddress from a
local variable onto the operand stack. This asymmetry with the astore instruction
is intentional.

7.5.5 aload_<n>
Load reference from local variable

Format

Forms

aload_0 = 24 (0x18)
aload_1 = 25 (0x19)
aload_2 = 26 (0x1a)
aload_3 = 27 (0x1b)

Stack

… ->
…, objectref

Description

The <n> must be a valid index into the local variables of the current frame
(Section 3.5, “Frames” on page 3-3). The local variable at <n> must contain a
reference. The objectref in the local variable at <n> is pushed onto the operand stack.

Notes

An aload_<n> instruction cannot be used to load a value of type returnAddress from
a local variable onto the operand stack. This asymmetry with the corresponding
astore_<n> instruction is intentional.

Each of the aload_<n> instructions is the same as aload with an index of <n>, except
that the operand <n> is implicit.

aload_<n>
Chapter 7 Java Card Virtual Machine Instruction Set 7-9

7.5.6 anewarray
Create new array of reference

Format

Forms

anewarray = 145 (0x91)

Stack

…, count ->
…, arrayref

Description

The count must be of type short. It is popped off the operand stack. The count
represents the number of components of the array to be created. The unsigned
indexbyte1 and indexbyte2 are used to construct an index into the constant pool of
the current package (Section 3.5, “Frames” on page 3-3), where the value of the index
is (indexbyte1 << 8) | indexbyte2. The item at that index in the constant pool must
be of type CONSTANT_Classref (Section 6.7.1, “CONSTANT_Classref” on
page 6-16), a reference to a class or interface type. The reference is resolved. A new
array with components of that type, of length count, is allocated from the heap, and
a reference arrayref to this new array object is pushed onto the operand stack. All
components of the new array are initialized to null, the default value for reference
types.

Runtime Exception

If count is less than zero, the anewarray instruction throws a
NegativeArraySizeException.

7.5.7 areturn
Return reference from method

Format

anewarray

indexbyte1

indexbyte2

areturn
7-10 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Forms

areturn = 119 (0x77)

Stack

…, objectref ->
[empty]

Description

The objectref must be of type reference. The objectref is popped from the operand
stack of the current frame (Section 3.5, “Frames” on page 3-3) and pushed onto the
operand stack of the frame of the invoker. Any other values on the operand stack of
the current method are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to
the invoker.

7.5.8 arraylength
Get length of array

Format

Forms

arraylength = 146 (0x92)

Stack

…, arrayref ->
…, length

Description

The arrayref must be of type reference and must refer to an array. It is popped from
the operand stack. The length of the array it references is determined. That length is
pushed onto the top of the operand stack as a short.

Runtime Exception

If arrayref is null, the arraylength instruction throws a NullPointerException.

Notes

arraylength
Chapter 7 Java Card Virtual Machine Instruction Set 7-11

In some circumstances, the arraylength instruction may throw a SecurityException if
the current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.9 astore
Store reference into local variable

Format

Forms

astore = 40 (0x28)

Stack

…, objectref ->
…

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (Section 3.5, “Frames” on page 3-3). The objectref on the top of the
operand stack must be of type returnAddress or of type reference. The objectref is
popped from the operand stack, and the value of the local variable at index is set to
objectref.

Notes

The astore instruction is used with an objectref of type returnAddress when
implementing Java’s finally keyword. The aload instruction cannot be used to load a
value of type returnAddress from a local variable onto the operand stack. This
asymmetry with the astore instruction is intentional.

7.5.10 astore_<n>
Store reference into local variable

astore

index
7-12 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Format

Forms

astore_0 = 43 (0x2b)
astore_1 = 44 (0x2c)
astore_2 = 45 (0x2d)
astore_3 = 46 (0x2e)

Stack

…, objectref ->
…

Description

The <n> must be a valid index into the local variables of the current frame
(Section 3.5, “Frames” on page 3-3). The objectref on the top of the operand stack
must be of type returnAddress or of type reference. It is popped from the operand
stack, and the value of the local variable at <n> is set to objectref.

Notes

An astore_<n> instruction is used with an objectref of type returnAddress when
implementing Java’s finally keyword. An aload_<n> instruction cannot be used to
load a value of type returnAddress from a local variable onto the operand stack.
This asymmetry with the corresponding astore_<n> instruction is intentional.

Each of the astore_<n> instructions is the same as astore with an index of <n>,
except that the operand <n> is implicit.

7.5.11 athrow
Throw exception or error

Format

Forms

athrow = 147 (0x93)

Stack

astore_<n>

athrow
Chapter 7 Java Card Virtual Machine Instruction Set 7-13

…, objectref ->
objectref

Description

The objectref must be of type reference and must refer to an object that is an instance
of class Throwable or of a subclass of Throwable. It is popped from the operand
stack. The objectref is then thrown by searching the current frame (Section 3.5,
“Frames” on page 3-3) for the most recent catch clause that catches the class of
objectref or one of its superclasses.

If a catch clause is found, it contains the location of the code intended to handle this
exception. The pc register is reset to that location, the operand stack of the current
frame is cleared, objectref is pushed back onto the operand stack, and execution
continues. If no appropriate clause is found in the current frame, that frame is
popped, the frame of its invoker is reinstated, and the objectref is rethrown.

If no catch clause is found that handles this exception, the virtual machine exits.

Runtime Exception

If objectref is null, athrow throws a NullPointerException instead of objectref.

Notes

In some circumstances, the athrow instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.12 baload
Load byte or boolean from array

Format

Forms

baload = 37 (0x25)

Stack

…, arrayref, index ->
…, value

baload
7-14 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Description

The arrayref must be of type reference and must refer to an array whose components
are of type byte or of type boolean. The index must be of type short. Both arrayref
and index are popped from the operand stack. The byte value in the component of
the array at index is retrieved, sign-extended to a short value, and pushed onto the
top of the operand stack.

Runtime Exceptions

If arrayref is null, baload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
baload instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the baload instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.13 bastore
Store into byte or boolean array

Format

Forms

bastore = 56 (0x38)

Stack

…, arrayref, index, value ->
…

Description

The arrayref must be of type reference and must refer to an array whose components
are of type byte or of type boolean. The index and value must both be of type short.
The arrayref, index and value are popped from the operand stack. The short value is
truncated to a byte and stored as the component of the array indexed by index.

Runtime Exceptions

bastore
Chapter 7 Java Card Virtual Machine Instruction Set 7-15

If arrayref is null, bastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
bastore instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the bastore instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.14 bipush
Push byte

Format

Forms

bipush = 18 (0x12)

Stack

… ->
…, value.word1, value.word2

Description

The immediate byte is sign-extended to an int, and the resulting value is pushed
onto the operand stack.

Note – If a virtual machine does not support the int data type, the bipush
instruction will not be available.

7.5.15 bspush
Push byte

bipush

byte
7-16 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Format

Forms

bspush = 16 (0x10)

Stack

… ->
…, value

Description

The immediate byte is sign-extended to a short, and the resulting value is pushed
onto the operand stack.

7.5.16 checkcast
Check whether object is of given type

Format

Forms

checkcast = 148 (0x94)

Stack

…, objectref ->
…, objectref

Description

bspush

byte

checkcast

atype

indexbyte1

indexbyte2
Chapter 7 Java Card Virtual Machine Instruction Set 7-17

The unsigned byte atype is a code that indicates if the type against which the object
is being checked is an array type or a class type. It must take one of the following
values or zero:

If the value of atype is 10, 11, 12, or 13, the values of the indexbyte1 and indexbyte2
must be zero, and the value of atype indicates the array type against which to check
the object. Otherwise the unsigned indexbyte1 and indexbyte2 are used to construct
an index into the constant pool of the current package (Section 3.5, “Frames” on
page 3-3), where the value of the index is (indexbyte1 << 8) | indexbyte2. The item
at that index in the constant pool must be of type CONSTANT_Classref
(Section 6.7.1, “CONSTANT_Classref” on page 6-16), a reference to a class or
interface type. The reference is resolved. If the value of atype is 14, the object is
checked against an array type that is an array of object references of the type of the
resolved class. If the value of atype is zero, the object is checked against a class or
interface type that is the resolved class.

The objectref must be of type reference. If objectref is null or can be cast to the
specified array type or the resolved class or interface type, the operand stack is
unchanged; otherwise the checkcast instruction throws a ClassCastException.

The following rules are used to determine whether an objectref that is not null can
be cast to the resolved type: if S is the class of the object referred to by objectref and
T is the resolved class, array or interface type, checkcast determines whether
objectref can be cast to type T as follows:

■ If S is a class type, then:

■ If T is a class type, then S must be the same class as T, or S must be a subclass
of T;

■ If T is an interface type, then S must implement interface T.

■ If S is an interface type1, then:

TABLE 7-2 Array Values

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13

T_REFERENCE 14

1. When both S and T are arrays of reference types, this algorithm is applied recursively using the types of the
arrays, namely SC and TC. In the recursive call, S, which was SC in the original call, may be an interface type.
This rule can only be reached in this manner. Similarly, in the recursive call,T, which was TC in the original
call, may be an interface type.
7-18 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

■ If T is a class type, then T must be Object (Section 2.2.2.4, “Classes” on
page 2-7);

■ If T is an interface type, T must be the same interface as S or a superinterface of
S.

■ If S is an array type, namely the type SC[], that is, an array of components of type
SC, then:

■ If T is a class type, then T must be Object.

■ If T is an array type, namely the type TC[], an array of components of type TC,
then one of the following must be true:

TC and SC are the same primitive type (Section 3.1, “Data Types and Values”
on page 3-1).

TC and SC are reference types1 (Section 3.1, “Data Types and Values” on
page 3-1) with type SC assignable to TC, by these rules.

■ If T is an interface type, T must be one of the interfaces implemented by arrays.

Runtime Exception

If objectref cannot be cast to the resolved class, array, or interface type, the checkcast
instruction throws a ClassCastException.

Notes

The checkcast instruction is fundamentally very similar to the instanceof instruction.
It differs in its treatment of null, its behavior when its test fails (checkcast throws an
exception, instanceof pushes a result code), and its effect on the operand stack.

In some circumstances, the checkcast instruction may throw a SecurityException if
the current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the value of atype may not
be 13 (array type = T_INT).

7.5.17 dup
Duplicate top operand stack word

1. This version of the Java Card virtual machine specification does not support multi-dimensional arrays.
Therefore, neither SC or TC can be an array type.
Chapter 7 Java Card Virtual Machine Instruction Set 7-19

Format

Forms

dup = 61 (0x3d)

Stack

…, word ->
…, word, word

Description

The top word on the operand stack is duplicated and pushed onto the operand
stack.

The dup instruction must not be used unless word contains a 16-bit data type.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup
instruction operates on an untyped word, ignoring the type of data it contains.

7.5.18 dup_x
Duplicate top operand stack words and insert below

Format

Forms

dup_x = 63 (0x3f)

Stack

…, wordN, …, wordM, …, word1 ->
…, wordM, …, word1, wordN, …, wordM, …, word1

Description

dup

dup_x

mn
7-20 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The unsigned byte mn is used to construct two parameter values. The high nibble,
(mn & 0xf0) >> 4, is used as the value m. The low nibble, (mn & 0xf), is used as the
value n. Permissible values for m are 1 through 4. Permissible values for n are 0 and
m through m+4.

For positive values of n, the top m words on the operand stack are duplicated and
the copied words are inserted n words down in the operand stack. When n equals 0,
the top m words are copied and placed on top of the stack.

The dup_x instruction must not be used unless the ranges of words 1 through m and
words m+1 through n each contain either a 16-bit data type, two 16-bit data types, a
32-bit data type, a 16-bit data type and a 32-bit data type (in either order), or two 32-
bit data types.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup_x
instruction operates on untyped words, ignoring the types of data they contain.

If a virtual machine does not support the int data type, the permissible values for m
are 1 or 2, and permissible values for n are 0 and m through m+2.

7.5.19 dup2
Duplicate top two operand stack words

Format

Forms

dup2 = 62 (0x3e)

Stack

…, word2, word1 ->
…, word2, word1, word2, word1

Description

The top two words on the operand stack are duplicated and pushed onto the
operand stack, in the original order.

The dup2 instruction must not be used unless each of word1 and word2 is a word
that contains a 16-bit data type or both together are the two words of a single 32-bit
datum.

dup2
Chapter 7 Java Card Virtual Machine Instruction Set 7-21

Notes

Except for restrictions preserving the integrity of 32-bit data types, the dup2
instruction operates on untyped words, ignoring the types of data they contain.

7.5.20 getfield_<t>
Fetch field from object

Format

Forms

getfield_a = 131 (0x83)
getfield_b = 132 (0x84)
getfield_s = 133 (0x85)
getfield_i = 134 (0x86)

Stack

…, objectref ->
…, value

OR

…, objectref ->
…, value.word1, value.word2

Description

The objectref, which must be of type reference, is popped from the operand stack.
The unsigned index is used as an index into the constant pool of the current package
(Section 3.5, “Frames” on page 3-3). The constant pool item at the index must be of
type CONSTANT_InstanceFieldref (Section 6.7.2, “CONSTANT_InstanceFieldref,
CONSTANT_VirtualMethodref, and CONSTANT_SuperMethodref” on page 6-18), a
reference to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a
member of a superclass of the current class, and the field is not declared in the same
package as the current class, then the class of objectref must be either the current
class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:

■ a field must be of type reference

getfield_<t>

index
7-22 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

■ b field must be of type byte or type boolean
■ s field must be of type short
■ i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset1. The value at that
offset into the class instance referenced by objectref is fetched. If the value is of type
byte or type boolean, it is sign-extended to a short. The value is pushed onto the
operand stack.

Runtime Exception

If objectref is null, the getfield_<t> instruction throws a NullPointerException.

Notes

In some circumstances, the getfield_<t> instruction may throw a SecurityException
if the current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the getfield_i instruction will
not be available.

7.5.21 getfield_<t>_this
Fetch field from current object

Format

Forms

getfield_a_this = 173 (0xad)
getfield_b_this = 174 (0xae)
getfield_s_this = 175 (0xaf)
getfield_i_this = 176 (0xb0)

Stack

1. The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may
define any mapping from token value to offset into an instance.

getfield_<t>_this

index
Chapter 7 Java Card Virtual Machine Instruction Set 7-23

… ->
…, value

OR

… ->
…, value.word1, value.word2

Description

The currently executing method must be an instance method. The local variable at
index 0 must contain a reference objectref to the currently executing method’s this
parameter. The unsigned index is used as an index into the constant pool of the
current package (Section 3.5, “Frames” on page 3-3). The constant pool item at the
index must be of type CONSTANT_InstanceFieldref (Section 6.7.2,
“CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref” on page 6-18), a reference to a class and a field
token.

The class of objectref must not be an array. If the field is protected, and it is a
member of a superclass of the current class, and the field is not declared in the same
package as the current class, then the class of objectref must be either the current
class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:

■ a field must be of type reference
■ b field must be of type byte or type boolean
■ s field must be of type short
■ i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset1. The value at that
offset into the class instance referenced by objectref is fetched. If the value is of type
byte or type boolean, it is sign-extended to a short. The value is pushed onto the
operand stack.

Runtime Exception

If objectref is null, the getfield_<t>_this instruction throws a NullPointerException.

Notes

1. The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may
define any mapping from token value to offset into an instance.
7-24 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

In some circumstances, the getfield_<t>_this instruction may throw a
SecurityException if the current context (Section 3.4, “Contexts” on page 3-2) is not
the owning context (Section 3.4, “Contexts” on page 3-2) of the object referenced by
objectref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the getfield_i_this instruction
will not be available.

7.5.22 getfield_<t>_w
Fetch field from object (wide index)

Format

Forms

getfield_a_w = 169 (0xa9)
getfield_b_w = 170 (0xaa)
getfield_s_w = 171 (0xab)
getfield_i_w = 172 (0xac)

Stack

…, objectref ->
…, value

OR

…, objectref ->
…, value.word1, value.word2

Description

The objectref, which must be of type reference, is popped from the operand stack.
The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at the
index must be of type CONSTANT_InstanceFieldref (Section 6.7.2,
“CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref” on page 6-18), a reference to a class and a field
token. The item must resolve to a field of type reference.

getfield_<t>_w

indexbyte1

indexbyte2
Chapter 7 Java Card Virtual Machine Instruction Set 7-25

The class of objectref must not be an array. If the field is protected, and it is a
member of a superclass of the current class, and the field is not declared in the same
package as the current class, then the class of objectref must be either the current
class or a subclass of the current class.

The item must resolve to a field with a type that matches t, as follows:

■ a field must be of type reference
■ b field must be of type byte or type boolean
■ s field must be of type short
■ i field must be of type int

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset1. The value at that
offset into the class instance referenced by objectref is fetched. If the value is of type
byte or type boolean, it is sign-extended to a short. The value is pushed onto the
operand stack.

Runtime Exception

If objectref is null, the getfield_<t>_w instruction throws a NullPointerException.

Notes

In some circumstances, the getfield_<t>_w instruction may throw a
SecurityException if the current context (Section 3.4, “Contexts” on page 3-2) is not
the owning context Section 3.4, “Contexts” on page 3-2) of the object referenced by
objectref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the getfield_i_w instruction
will not be available.

7.5.23 getstatic_<t>
Get static field from class

Format

1. The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may
define any mapping from token value to offset into an instance.

getstatic_<t>

indexbyte1

indexbyte2
7-26 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Forms

getstatic_a = 123 (0x7b)
getstatic_b = 124 (0x7c)
getstatic_s = 125 (0x7d)
getstatic_i = 126 (0x7e)

Stack

… ->
…, value

OR

… ->
…, value.word1, value.word2

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at the
index must be of type CONSTANT_StaticFieldref (Section 6.7.3,
“CONSTANT_StaticFieldref and CONSTANT_StaticMethodref” on page 6-19), a
reference to a static field.

The item must resolve to a field with a type that matches t, as follows:

■ a field must be of type reference
■ b field must be of type byte or type boolean
■ s field must be of type short
■ i field must be of type int

The width of a class field is determined by the field type specified in the instruction.
The item is resolved, determining the field offset. The item is resolved, determining
the class field. The value of the class field is fetched. If the value is of type byte or
boolean, it is sign-extended to a short. The value is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the getstatic_i instruction
will not be available.

7.5.24 goto
Branch always
Chapter 7 Java Card Virtual Machine Instruction Set 7-27

Format

Forms

goto = 112 (0x70)

Stack

No change

Description

The value branch is used as a signed 8-bit offset. Execution proceeds at that offset
from the address of the opcode of this goto instruction. The target address must be
that of an opcode of an instruction within the method that contains this goto
instruction.

7.5.25 goto_w
Branch always (wide index)

Format

Forms

goto_w = 168 (0xa8)

Stack

No change

Description

The unsigned bytes branchbyte1 and branchbyte2 are used to construct a signed 16-
bit branchoffset, where branchoffset is (branchbyte1 << 8) | branchbyte2. Execution
proceeds at that offset from the address of the opcode of this goto instruction. The
target address must be that of an opcode of an instruction within the method that
contains this goto instruction.

goto

branch

goto_w

branchbyte1

branchbyte2
7-28 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

7.5.26 i2b
Convert int to byte

Format

Forms

i2b = 93 (0x5d)

Stack

…, value.word1, value.word2 ->
…, result

Description

The value on top of the operand stack must be of type int. It is popped from the
operand stack and converted to a byte result by taking the low-order 16 bits of the
int value, and discarding the high-order 16 bits. The low-order word is truncated to
a byte, then sign-extended to a short result. The result is pushed onto the operand
stack.

Notes

The i2b instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value. The result may also not have the
same sign as value.

If a virtual machine does not support the int data type, the i2b instruction will not be
available.

7.5.27 i2s
Convert int to short

Format

Forms

i2s = 94 (0x5e)

Stack

i2b

i2s
Chapter 7 Java Card Virtual Machine Instruction Set 7-29

…, value.word1, value.word2 ->
…, result

Description

The value on top of the operand stack must be of type int. It is popped from the
operand stack and converted to a short result by taking the low-order 16 bits of the
int value and discarding the high-order 16 bits. The result is pushed onto the
operand stack.

Notes

The i2s instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value. The result may also not have the
same sign as value.

If a virtual machine does not support the int data type, the i2s instruction will not be
available.

7.5.28 iadd
Add int

Format

Forms

iadd = 66 (0x42)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. The int result is value1 + value2. The result is pushed onto the
operand stack.

If an iadd instruction overflows, then the result is the low-order bits of the true
mathematical result in a sufficiently wide two’s-complement format. If overflow
occurs, then the sign of the result may not be the same as the sign of the
mathematical sum of the two values.

Notes

iadd
7-30 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

If a virtual machine does not support the int data type, the iadd instruction will not
be available.

7.5.29 iaload
Load int from array

Format

Forms

iaload = 39 (0x27)

Stack

…, arrayref, index ->
…, value.word1, value.word2

Description

The arrayref must be of type reference and must refer to an array whose components
are of type int. The index must be of type short. Both arrayref and index are popped
from the operand stack. The int value in the component of the array at index is
retrieved and pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, iaload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
iaload instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the iaload instruction may throw a SecurityException if the
current context Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the iaload instruction will
not be available.

iaload
Chapter 7 Java Card Virtual Machine Instruction Set 7-31

7.5.30 iand
Boolean AND int

Format

Forms

iand = 84 (0x54)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. They are popped from the operand
stack. An int result is calculated by taking the bitwise AND (conjunction) of value1
and value2. The result is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iand instruction will not
be available.

7.5.31 iastore
Store into int array

Format

Forms

iastore = 58 (0x3a)

Stack

…, arrayref, index, value.word1, value.word2 ->
…

Description

iand

iastore
7-32 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The arrayref must be of type reference and must refer to an array whose components
are of type int. The index must be of type short and value must be of type int. The
arrayref, index and value are popped from the operand stack. The int value is stored
as the component of the array indexed by index.

Runtime Exception

If arrayref is null, iastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
iastore instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the iastore instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the iastore instruction will
not be available.

7.5.32 icmp
Compare int

Format

Forms

icmp = 95 (0x5f)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result

Description

Both value1 and value2 must be of type int. They are both popped from the operand
stack, and a signed integer comparison is performed. If value1 is greater than value2,
the short value 1 is pushed onto the operand stack. If value1 is equal to value2, the
short value 0 is pushed onto the operand stack. If value1 is less than value2, the
short value –1 is pushed onto the operand stack.

icmp
Chapter 7 Java Card Virtual Machine Instruction Set 7-33

Notes

If a virtual machine does not support the int data type, the icmp instruction will not
be available.

7.5.33 iconst_<i>
Push int constant

Format

Forms

iconst_m1 = 10 (0x09)
iconst_0 = 11 (0xa)
iconst_1 = 12 (0xb)
iconst_2 = 13 (0xc)
iconst_3 = 14 (0xd)
iconst_4 = 15 (0xe)
iconst_5 = 16 (0xf)

Stack

… ->
…, <i>.word1, <i>.word2

Description

Push the int constant <i> (-1, 0, 1, 2, 3, 4, or 5) onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iconst_<i> instruction
will not be available.

7.5.34 idiv
Divide int

Format

iconst_<i>

idiv
7-34 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Forms

idiv = 72 (0x48)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. The int result is the value of the Java expression value1 / value2. The
result is pushed onto the operand stack.

An int division rounds towards 0; that is, the quotient produced for int values in
n/d is an int value q whose magnitude is as large as possible while satisfying | d · q
| <= | n |. Moreover, q is a positive when | n | >= | d | and n and d have the
same sign, but q is negative when | n | >= | d | and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the dividend is the negative
integer of the largest possible magnitude for the int type, and the divisor is –1, then
overflow occurs, and the result is equal to the dividend. Despite the overflow, no
exception is thrown in this case.

Runtime Exception

If the value of the divisor in an int division is 0, idiv throws an ArithmeticException.

Notes

If a virtual machine does not support the int data type, the idiv instruction will not
be available.

7.5.35 if_acmp<cond>
Branch if reference comparison succeeds.

Format

Forms

if_acmpeq = 104 (0x68)
if_acmpne = 105 (0x69)

if_acmp<cond>

branch
Chapter 7 Java Card Virtual Machine Instruction Set 7-35

Stack

…, value1, value2 ->
…

Description

Both value1 and value2 must be of type reference. They are both popped from the
operand stack and compared. The results of the comparisons are as follows:

■ eq succeeds if and only if value1 = value2
■ ne succeeds if and only if value1 ¼ value2

If the comparison succeeds, branch is used as signed 8-bit offset, and execution
proceeds at that offset from the address of the opcode of this if_acmp<cond>
instruction. The target address must be that of an opcode of an instruction within the
method that contains this if_acmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_acmp<cond> instruction.

7.5.36 if_acmp<cond>_w
Branch if reference comparison succeeds (wide index)

Format

Forms

if_acmpeq_w = 160 (0xa0)
if_acmpne_w = 161 (0xa1)

Stack

…, value1, value2 ->
…

Description

Both value1 and value2 must be of type reference. They are both popped from the
operand stack and compared. The results of the comparisons are as follows:

■ eq succeeds if and only if value1 = value2
■ ne succeeds if and only if value1 ¼ value2

if_acmp<cond>_w

branchbyte1

branchbyte2
7-36 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are
used to construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 <<
8) | branchbyte2. Execution proceeds at that offset from the address of the opcode of
this if_acmp<cond>_w instruction. The target address must be that of an opcode of
an instruction within the method that contains this if_acmp<cond>_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_acmp<cond>_w instruction.

7.5.37 if_scmp<cond>
Branch if short comparison succeeds

Format

Forms

if_scmpeq = 106 (0x6a)
if_scmpne = 107 (0x6b)
if_scmplt = 108 (0x6c)
if_scmpge = 109 (0x6d)
if_scmpgt = 110 (0x6e)
if_scmple = 111 (0x6f)

Stack

…, value1, value2 ->
…

Description

Both value1 and value2 must be of type short. They are both popped from the
operand stack and compared. All comparisons are signed. The results of the
comparisons are as follows:

■ eq succeeds if and only if value1 = value2
■ ne succeeds if and only if value1 ¼ value2
■ lt succeeds if and only if value1 < value2
■ le succeeds if and only if value1 £ value2
■ gt succeeds if and only if value1 > value2
■ ge succeeds if and only if value1 Š value2

if_scmp<cond>

branch
Chapter 7 Java Card Virtual Machine Instruction Set 7-37

If the comparison succeeds, branch is used as signed 8-bit offset, and execution
proceeds at that offset from the address of the opcode of this if_scmp<cond>
instruction. The target address must be that of an opcode of an instruction within the
method that contains this if_scmp<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_scmp<cond> instruction.

7.5.38 if_scmp<cond>_w
Branch if short comparison succeeds (wide index)

Format

Forms

if_scmpeq_w = 162 (0xa2)
if_scmpne_w = 163 (0xa3)
if_scmplt_w = 164 (0xa4)
if_scmpge_w = 165 (0xa5)
if_scmpgt_w = 166 (0xa6)
if_scmple_w = 167 (0xa7)

Stack

…, value1, value2 ->
…

Description

Both value1 and value2 must be of type short. They are both popped from the
operand stack and compared. All comparisons are signed. The results of the
comparisons are as follows:

■ eq succeeds if and only if value1 = value2
■ ne succeeds if and only if value1 ¼ value2
■ lt succeeds if and only if value1 < value2
■ le succeeds if and only if value1 £ value2
■ gt succeeds if and only if value1 > value2
■ ge succeeds if and only if value1 Š value2

if_scmp<cond>_w

branchbyte1

branchbyte2
7-38 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are
used to construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 <<
8) | branchbyte2. Execution proceeds at that offset from the address of the opcode of
this if_scmp<cond>_w instruction. The target address must be that of an opcode of
an instruction within the method that contains this if_scmp<cond>_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
if_scmp<cond>_w instruction.

7.5.39 if<cond>
Branch if short comparison with zero succeeds

Format

Forms

ifeq = 96 (0x60)
ifne = 97 (0x61)
iflt = 98 (0x62)
ifge = 99 (0x63)
ifgt = 100 (0x64)
ifle = 101 (0x65)

Stack

…, value ->
…

Description

The value must be of type short. It is popped from the operand stack and compared
against zero. All comparisons are signed. The results of the comparisons are as
follows:

■ eq succeeds if and only if value = 0
■ ne succeeds if and only if value ¼ 0
■ lt succeeds if and only if value < 0
■ le succeeds if and only if value £ 0
■ gt succeeds if and only if value > 0
■ ge succeeds if and only if value Š 0

if<cond>

branch
Chapter 7 Java Card Virtual Machine Instruction Set 7-39

If the comparison succeeds, branch is used as signed 8-bit offset, and execution
proceeds at that offset from the address of the opcode of this if<cond> instruction.
The target address must be that of an opcode of an instruction within the method
that contains this if<cond> instruction.

Otherwise, execution proceeds at the address of the instruction following this
if<cond> instruction.

7.5.40 if<cond>_w
Branch if short comparison with zero succeeds (wide index)

Format

Forms

ifeq_w = 152 (0x98)
ifne_w = 153 (0x99)
iflt_w = 154 (0x9a)
ifge_w = 155 (0x9b)
ifgt_w = 156 (0x9c)
ifle_w = 157 (0x9d)

Stack

…, value ->
…

Description

The value must be of type short. It is popped from the operand stack and compared
against zero. All comparisons are signed. The results of the comparisons are as
follows:

■ eq succeeds if and only if value = 0
■ ne succeeds if and only if value ¼ 0
■ lt succeeds if and only if value < 0
■ le succeeds if and only if value £ 0
■ gt succeeds if and only if value > 0
■ ge succeeds if and only if value Š 0

if<cond>_w

branchbyte1

branchbyte2
7-40 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

If the comparison succeeds, the unsigned bytes branchbyte1 and branchbyte2 are
used to construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 <<
8) | branchbyte2. Execution proceeds at that offset from the address of the opcode of
this if<cond>_w instruction. The target address must be that of an opcode of an
instruction within the method that contains this if<cond>_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
if<cond>_w instruction.

7.5.41 ifnonnull
Branch if reference not null

Format

Forms

ifnonnull = 103 (0x67)

Stack

…, value ->
…

Description

The value must be of type reference. It is popped from the operand stack. If the
value is not null, branch is used as signed 8-bit offset, and execution proceeds at that
offset from the address of the opcode of this ifnonnull instruction. The target
address must be that of an opcode of an instruction within the method that contains
this ifnonnull instruction.

Otherwise, execution proceeds at the address of the instruction following this
ifnonnull instruction.

7.5.42 ifnonnull_w
Branch if reference not null (wide index)

ifnonnull

branch
Chapter 7 Java Card Virtual Machine Instruction Set 7-41

Format

Forms

ifnonnull_w = 159 (0x9f)

Stack

…, value ->
…

Description

The value must be of type reference. It is popped from the operand stack. If the
value is not null, the unsigned bytes branchbyte1 and branchbyte2 are used to
construct a signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) |
branchbyte2. Execution proceeds at that offset from the address of the opcode of this
ifnonnull_w instruction. The target address must be that of an opcode of an
instruction within the method that contains this ifnonnull_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
ifnonnull_w instruction.

7.5.43 ifnull
Branch if reference is null

Format

Forms

ifnull = 102 (0x66)

Stack

…, value ->
…

Description

ifnonnull_w

branchbyte1

branchbyte2

ifnull

branch
7-42 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The value must be of type reference. It is popped from the operand stack. If the
value is null, branch is used as signed 8-bit offset, and execution proceeds at that
offset from the address of the opcode of this ifnull instruction. The target address
must be that of an opcode of an instruction within the method that contains this
ifnull instruction.

Otherwise, execution proceeds at the address of the instruction following this ifnull
instruction.

7.5.44 ifnull_w
Branch if reference is null (wide index)

Format

Forms

ifnull_w = 158 (0x9e)

Stack

…, value ->
…

Description

The value must be of type reference. It is popped from the operand stack. If the
value is null, the unsigned bytes branchbyte1 and branchbyte2 are used to construct
a signed 16-bit branchoffset, where branchoffset is (branchbyte1 << 8) |
branchbyte2. Execution proceeds at that offset from the address of the opcode of this
ifnull_w instruction. The target address must be that of an opcode of an instruction
within the method that contains this ifnull_w instruction.

Otherwise, execution proceeds at the address of the instruction following this
ifnull_w instruction.

7.5.45 iinc
Increment local int variable by constant

ifnull_w

branchbyte1

branchbyte2
Chapter 7 Java Card Virtual Machine Instruction Set 7-43

Format

Forms

iinc = 90 (0x5a)

Stack

No change

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into
the local variables of the current frame (Section 3.5, “Frames” on page 3-3). The local
variables at index and index + 1 together must contain an int. The const is an
immediate signed byte. The value const is first sign-extended to an int, then the int
contained in the local variables at index and index + 1 is incremented by that
amount.

Notes

If a virtual machine does not support the int data type, the iinc instruction will not
be available.

7.5.46 iinc_w
Increment local int variable by constant

Format

Forms

iinc_w = 151 (0x97)

Stack

iinc

index

const

iinc_w

index

byte1

byte2
7-44 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

No change

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into
the local variables of the current frame (Section 3.5, “Frames” on page 3-3). The local
variables at index and index + 1 together must contain an int. The immediate
unsigned byte1 and byte2 values are assembled into an intermediate short where the
value of the short is (byte1 << 8) | byte2. The intermediate value is then sign-
extended to an int const. The int contained in the local variables at index and index
+ 1 is incremented by const.

Notes

If a virtual machine does not support the int data type, the iinc_w instruction will
not be available.

7.5.47 iipush
Push int

Format

Forms

iipush = 20 (0x14)

Stack

… ->
…, value1.word1, value1.word2

Description

The immediate unsigned byte1, byte2, byte3, and byte4 values are assembled into a
signed int where the value of the int is (byte1 << 24) | (byte2 << 16) | (byte3 << 8) |
byte4. The resulting value is pushed onto the operand stack.

Notes

iipush

byte1

byte2

byte3

byte4
Chapter 7 Java Card Virtual Machine Instruction Set 7-45

If a virtual machine does not support the int data type, the iipush instruction will
not be available.

7.5.48 iload
Load int from local variable

Format

Forms

iload = 23 (0x17)

Stack

… ->
…, value1.word1, value1.word2

Description

The index is an unsigned byte. Both index and index + 1 must be valid indices into
the local variables of the current frame (Section 3.5, “Frames” on page 3-3). The local
variables at index and index + 1 together must contain an int. The value of the local
variables at index and index + 1 is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the iload instruction will not
be available.

7.5.49 iload_<n>
Load int from local variable

Format

Forms

iload

index

iload_<n>
7-46 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

iload_0 = 32 (0x20)
iload_1 = 33 (0x21)
iload_2 = 34 (0x22)
iload_3 = 35 (0x23)

Stack

… ->
…, value1.word1, value1.word2

Description

Both <n> and <n> + 1 must be a valid indices into the local variables of the current
frame (Section 3.5, “Frames” on page 3-3). The local variables at <n> and <n> + 1
together must contain an int. The value of the local variables at <n> and <n> + 1 is
pushed onto the operand stack.

Notes

Each of the iload_<n> instructions is the same as iload with an index of <n>, except
that the operand <n> is implicit.

If a virtual machine does not support the int data type, the iload_<n> instruction
will not be available.

7.5.50 ilookupswitch
Access jump table by key match and jump

Format

Pair Format

ilookupswitch

defaultbyte1

defaultbyte2

npairs1

npairs2

match-offset pairs…

matchbyte1

matchbyte2

matchbyte3
Chapter 7 Java Card Virtual Machine Instruction Set 7-47

Forms

ilookupswitch = 118 (0x76)

Stack

…, key.word1, key.word2 ->
…

Description

An ilookupswitch instruction is a variable-length instruction. Immediately after the
ilookupswitch opcode follow a signed 16-bit value default, an unsigned 16-bit value
npairs, and then npairs pairs. Each pair consists of an int match and a signed 16-bit
offset. Each match is constructed from four unsigned bytes as (matchbyte1 << 24) |
(matchbyte2 << 16) | (matchbyte3 << 8) | matchbyte4. Each offset is constructed
from two unsigned bytes as (offsetbyte1 << 8) | offsetbyte2.

The table match-offset pairs of the ilookupswitch instruction must be sorted in
increasing numerical order by match.

The key must be of type int and is popped from the operand stack and compared
against the match values. If it is equal to one of them, then a target address is
calculated by adding the corresponding offset to the address of the opcode of this
ilookupswitch instruction. If the key does not match any of the match values, the
target address is calculated by adding default to the address of the opcode of this
ilookupswitch instruction. Execution then continues at the target address.

The target address that can be calculated from the offset of each match-offset pair, as
well as the one calculated from default, must be the address of an opcode of an
instruction within the method that contains this ilookupswitch instruction.

Notes

The match-offset pairs are sorted to support lookup routines that are quicker than
linear search.

If a virtual machine does not support the int data type, the ilookupswitch instruction
will not be available.

matchbyte4

offsetbyte1

offsetbyte2
7-48 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

7.5.51 imul
Multiply int

Format

Forms

imul = 70 (0x46)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. The int result is value1 * value2. The result is pushed onto the
operand stack.

If an imul instruction overflows, then the result is the low-order bits of the
mathematical product as an int. If overflow occurs, then the sign of the result may
not be the same as the sign of the mathematical product of the two values.

Notes

If a virtual machine does not support the int data type, the imul instruction will not
be available.

7.5.52 ineg
Negate int

Format

Forms

ineg = 76 (0x4c)

Stack

…, value.word1, value.word2 ->
…, result.word1, result.word2

imul

ineg
Chapter 7 Java Card Virtual Machine Instruction Set 7-49

Description

The value must be of type int. It is popped from the operand stack. The int result is
the arithmetic negation of value, -value. The result is pushed onto the operand stack.

For int values, negation is the same as subtraction from zero. Because the Java Card
virtual machine uses two’s-complement representation for integers and the range of
two’s-complement values is not symmetric, the negation of the maximum negative
int results in that same maximum negative number. Despite the fact that overflow
has occurred, no exception is thrown.

For all int values x, -x equals (~x) + 1.

Notes

If a virtual machine does not support the int data type, the ineg instruction will not
be available.

7.5.53 instanceof
Determine if object is of given type

Format

Forms

instanceof = 149 (0x95)

Stack

…, objectref ->
…, result

Description

instanceof

atype

indexbyte1

indexbyte2
7-50 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The unsigned byte atype is a code that indicates if the type against which the object
is being checked is an array type or a class type. It must take one of the following
values or zero:

If the value of atype is 10, 11, 12, or 13, the values of the indexbyte1 and indexbyte2
must be zero, and the value of atype indicates the array type against which to check
the object. Otherwise the unsigned indexbyte1 and indexbyte2 are used to construct
an index into the constant pool of the current package (Section 3.5, “Frames” on
page 3-3), where the value of the index is (indexbyte1 << 8) | indexbyte2. The item
at that index in the constant pool must be of type CONSTANT_Classref
(Section 6.7.1, “CONSTANT_Classref” on page 6-16), a reference to a class or
interface type. The reference is resolved. If the value of atype is 14, the object is
checked against an array type that is an array of object references of the type of the
resolved class. If the value of atype is zero, the object is checked against a class or
interface type that is the resolved class.

The objectref must be of type reference. It is popped from the operand stack. If
objectref is not null and is an instance of the resolved class, array or interface, the
instanceof instruction pushes a short result of 1 on the operand stack. Otherwise it
pushes a short result of 0.

The following rules are used to determine whether an objectref that is not null is an
instance of the resolved type: if S is the class of the object referred to by objectref and
T is the resolved class, array or interface type, instanceof determines whether
objectref is an instance of T as follows:

■ If S is a class type, then:

■ If T is a class type, then S must be the same class as T, or S must be a subclass
of T;

■ If T is an interface type, then S must implement interface T.

■ If S is an interface type1, then:

TABLE 7-3 Array Values

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13

T_REFERENCE 14

1. When both S and T are arrays of reference types, this algorithm is applied recursively using the types of the
arrays, namely SC and TC. In the recursive call, S, which was SC in the original call, may be an interface type.
This rule can only be reached in this manner. Similarly, in the recursive call,T, which was TC in the original
call, may be an interface type.
Chapter 7 Java Card Virtual Machine Instruction Set 7-51

■ If T is a class type, then T must be Object (Section 2.2.2.4, “Classes” on
page 2-7);

■ If T is an interface type, T must be the same interface as S or a superinterface of
S.

■ If S is an array type, namely the type SC[], that is, an array of components of type
SC, then:

■ If T is a class type, then T must be Object.

■ If T is an array type, namely the type TC[], an array of components of type TC,
then one of the following must be true:

TC and SC are the same primitive type (Section 3.1, “Data Types and Values”
on page 3-1).

TC and SC are reference types1 (Section 3.1, “Data Types and Values” on
page 3-1) with type SC assignable to TC, by these rules.

■ If T is an interface type, T must be one of the interfaces implemented by arrays.

Notes

The instanceof instruction is fundamentally very similar to the checkcast instruction.
It differs in its treatment of null, its behavior when its test fails (checkcast throws an
exception, instanceof pushes a result code), and its effect on the operand stack.

In some circumstances, the instanceof instruction may throw a SecurityException if
the current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the value of atype may not
be 13 (array type = T_INT).

7.5.54 invokeinterface
Invoke interface method

Format

1. This version of the Java Card virtual machine specification does not support multi-dimensional arrays.
Therefore, neither SC or TC can be an array type.

invokeinterface

nargs
7-52 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Forms

invokeinterface = 142 (0x8e)

Stack

…, objectref, [arg1, [arg2 …]] ->
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at that
index must be of type CONSTANT_Classref (Section 6.7.1, “CONSTANT_Classref”
on page 6-16), a reference to an interface class. The specified interface is resolved.

The nargs operand is an unsigned byte that must not be zero.

The method operand is an unsigned byte that is the interface method token for the
method to be invoked. The interface method must not be <init> or an instance
initialization method.

The objectref must be of type reference and must be followed on the operand stack
by nargs – 1 words of arguments. The number of words of arguments and the type
and order of the values they represent must be consistent with those of the selected
interface method.

The interface table of the class of the type of objectref is determined. If objectref is an
array type, then the interface table of class Object (Section 2.2.2.4, “Classes” on
page 2-7) is used. The interface table is searched for the resolved interface. The result
of the search is a table that is used to map the method token to a index.

The index is an unsigned byte that is used as an index into the method table of the
class of the type of objectref. If the objectref is an array type, then the method table
of class Object is used. The table entry at that index includes a direct reference to the
method’s code and modifier information.

The nargs – 1 words of arguments and objectref are popped from the operand stack.
A new stack frame is created for the method being invoked, and objectref and the
arguments are made the values of its first nargs words of local variables, with
objectref in local variable 0, arg1 in local variable 1, and so on. The new stack frame

indexbyte1

indexbyte2

method
Chapter 7 Java Card Virtual Machine Instruction Set 7-53

is then made current, and the Java Card virtual machine pc is set to the opcode of
the first instruction of the method to be invoked. Execution continues with the first
instruction of the method.

Runtime Exception

If objectref is null, the invokeinterface instruction throws a NullPointerException.

Notes

In some circumstances, the invokeinterface instruction may throw a
SecurityException if the current context (Section 3.4, “Contexts” on page 3-2) is not
the context (Section 3.4, “Contexts” on page 3-2) of the object referenced by objectref.
The exact circumstances when the exception will be thrown are specified in Chapter
6 of the Runtime Environment Specification, Java Card Platform, Version 2.2.2. If the
current context is not the object’s context and the Java Card RE permits invocation of
the method, the invokeinterface instruction will cause a context switch (Section 3.4,
“Contexts” on page 3-2) to the object’s context before invoking the method, and will
cause a return context switch to the previous context when the invoked method
returns.

7.5.55 invokespecial
Invoke instance method; special handling for superclass, private, and instance
initialization method invocations

Format

Forms

invokespecial = 140 (0x8c)

Stack

…, objectref, [arg1, [arg2 …]] ->
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. If the invoked method is a
private instance method or an instance initialization method, the constant pool item

invokespecial

indexbyte1

indexbyte2
7-54 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

at index must be of type CONSTANT_StaticMethodref (Section 6.7.3,
“CONSTANT_StaticFieldref and CONSTANT_StaticMethodref” on page 6-19), a
reference to a statically linked instance method. If the invoked method is a
superclass method, the constant pool item at index must be of type
CONSTANT_SuperMethodref (Section 6.7.2, “CONSTANT_InstanceFieldref,
CONSTANT_VirtualMethodref, and CONSTANT_SuperMethodref” on page 6-18), a
reference to an instance method of a specified class. The reference is resolved. The
resolved method must not be <clinit>, a class or interface initialization method. If
the method is <init>, an instance initialization method, then the method must only
be invoked once on an uninitialized object, and before the first backward branch
following the execution of the new instruction that allocated the object. Finally, if the
resolved method is protected, and it is a member of a superclass of the current class,
and the method is not declared in the same package as the current class, then the
class of objectref must be either the current class or a subclass of the current class.

The resolved method includes the code for the method, an unsigned byte nargs that
must not be zero, and the method’s modifier information.

The objectref must be of type reference, and must be followed on the operand stack
by nargs – 1 words of arguments, where the number of words of arguments and the
type and order of the values they represent must be consistent with those of the
selected instance method.

The nargs – 1 words of arguments and objectref are popped from the operand stack.
A new stack frame is created for the method being invoked, and objectref and the
arguments are made the values of its first nargs words of local variables, with
objectref in local variable 0, arg1 in local variable 1, and so on. The new stack frame
is then made current, and the Java Card virtual machine pc is set to the opcode of
the first instruction of the method to be invoked. Execution continues with the first
instruction of the method.

Runtime Exception

If objectref is null, the invokespecial instruction throws a NullPointerException.

7.5.56 invokestatic
Invoke a class (static) method

Format

invokestatic

indexbyte1

indexbyte2
Chapter 7 Java Card Virtual Machine Instruction Set 7-55

Forms

invokestatic = 141 (0x8d)

Stack

…, [arg1, [arg2 …]] ->
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at that
index must be of type CONSTANT_StaticMethodref (Section 6.7.3,
“CONSTANT_StaticFieldref and CONSTANT_StaticMethodref” on page 6-19), a
reference to a static method. The method must not be <init>, an instance
initialization method, or <clinit>, a class or interface initialization method. It must be
static, and therefore cannot be abstract.

The resolved method includes the code for the method, an unsigned byte nargs that
may be zero, and the method’s modifier information.

The operand stack must contain nargs words of arguments, where the number of
words of arguments and the type and order of the values they represent must be
consistent with those of the resolved method.

The nargs words of arguments are popped from the operand stack. A new stack
frame is created for the method being invoked, and the words of arguments are
made the values of its first nargs words of local variables, with arg1 in local variable
0, arg2 in local variable 1, and so on. The new stack frame is then made current, and
the Java Card virtual machine pc is set to the opcode of the first instruction of the
method to be invoked. Execution continues with the first instruction of the method.

7.5.57 invokevirtual
Invoke instance method; dispatch based on class

Format

Forms

invokevirtual = 139 (0x8b)

invokevirtual

indexbyte1

indexbyte2
7-56 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Stack

…, objectref, [arg1, [arg2 …]] ->
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at that
index must be of type CONSTANT_VirtualMethodref (Section 6.7.2,
“CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref” on page 6-18), a reference to a class and a virtual
method token. The specified method is resolved. The method must not be <init>, an
instance initialization method, or <clinit>, a class or interface initialization method.
Finally, if the resolved method is protected, and it is a member of a superclass of the
current class, and the method is not declared in the same package as the current
class, then the class of objectref must be either the current class or a subclass of the
current class.

The resolved method reference includes an unsigned index into the method table of
the resolved class and an unsigned byte nargs that must not be zero.

The objectref must be of type reference. The index is an unsigned byte that is used as
an index into the method table of the class of the type of objectref. If the objectref is
an array type, then the method table of class Object (Section 2.2.2.4, “Classes” on
page 2-7) is used. The table entry at that index includes a direct reference to the
method’s code and modifier information.

The objectref must be followed on the operand stack by nargs – 1 words of
arguments, where the number of words of arguments and the type and order of the
values they represent must be consistent with those of the selected instance method.

The nargs – 1 words of arguments and objectref are popped from the operand stack.
A new stack frame is created for the method being invoked, and objectref and the
arguments are made the values of its first nargs words of local variables, with
objectref in local variable 0, arg1 in local variable 1, and so on. The new stack frame
is then made current, and the Java Card virtual machine pc is set to the opcode of
the first instruction of the method to be invoked. Execution continues with the first
instruction of the method.

Runtime Exception

If objectref is null, the invokevirtual instruction throws a NullPointerException.

In some circumstances, the invokevirtual instruction may throw a SecurityException
if the current context (Section 3.4, “Contexts” on page 3-2) is not the context
(Section 3.4, “Contexts” on page 3-2) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2. If the current
Chapter 7 Java Card Virtual Machine Instruction Set 7-57

context is not the object’s context and the Java Card RE permits invocation of the
method, the invokevirtual instruction will cause a context switch (Section 3.4,
“Contexts” on page 3-2) to the object’s context before invoking the method, and will
cause a return context switch to the previous context when the invoked method
returns.

7.5.58 ior
Boolean OR int

Format

Forms

ior = 86 (0x56)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. An int result is calculated by taking the bitwise inclusive OR of
value1 and value2. The result is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the ior instruction will not be
available.

7.5.59 irem
Remainder int

Format

Forms

irem = 74 (0x4a)

ior

irem
7-58 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. The int result is the value of the Java expression value1 – (value1 /
value2) * value2. The result is pushed onto the operand stack.

The result of the irem instruction is such that (a/b)*b + (a%b) is equal to a. This
identity holds even in the special case that the dividend is the negative int of largest
possible magnitude for its type and the divisor is –1 (the remainder is 0). It follows
from this rule that the result of the remainder operation can be negative only if the
dividend is negative and can be positive only if the dividend is positive. Moreover,
the magnitude of the result is always less than the magnitude of the divisor.

Runtime Exception

If the value of the divisor for a short remainder operator is 0, irem throws an
ArithmeticException.

Notes

If a virtual machine does not support the int data type, the irem instruction will not
be available.

7.5.60 ireturn
Return int from method

Format

Forms

ireturn = 121 (0x79)

Stack

…, value.word1, value.word2 ->
[empty]

Description

ireturn
Chapter 7 Java Card Virtual Machine Instruction Set 7-59

The value must be of type int. It is popped from the operand stack of the current
frame (Section 3.5, “Frames” on page 3-3) and pushed onto the operand stack of the
frame of the invoker. Any other values on the operand stack of the current method
are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to
the invoker.

Notes

If a virtual machine does not support the int data type, the ireturn instruction will
not be available.

7.5.61 ishl
Shift left int

Format

Forms

ishl = 78 (0x4e)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. An int result is calculated by shifting value1 left by s bit positions,
where s is the value of the low five bits of value2. The result is pushed onto the
operand stack.

Notes

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s.
The shift distance actually used is always in the range 0 to 31, inclusive, as if value2
were subjected to a bitwise logical AND with the mask value 0x1f.

If a virtual machine does not support the int data type, the ishl instruction will not
be available.

ishl
7-60 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

7.5.62 ishr
Arithmetic shift right int

Format

Forms

ishr = 80 (0x50)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. An int result is calculated by shifting value1 right by s bit positions,
with sign extension, where s is the value of the low five bits of value2. The result is
pushed onto the operand stack.

Notes

The resulting value is Î(value1) / 2s°, where s is value2 & 0x1f. For nonnegative
value1, this is equivalent (even if overflow occurs) to truncating int division by 2 to
the power s. The shift distance actually used is always in the range 0 to 31, inclusive,
as if value2 were subjected to a bitwise logical AND with the mask value 0x1f.

Notes

If a virtual machine does not support the int data type, the ishr instruction will not
be available.

7.5.63 istore
Store int into local variable

Format

Forms

ishr

istore

index
Chapter 7 Java Card Virtual Machine Instruction Set 7-61

istore = 42 (0x2a)

Stack

…, value.word1, value.word2 ->
…

Description

The index is an unsigned byte. Both index and index + 1 must be a valid index into
the local variables of the current frame (Section 3.5, “Frames” on page 3-3). The
value on top of the operand stack must be of type int. It is popped from the operand
stack, and the local variables at index and index + 1 are set to value.

Notes

If a virtual machine does not support the int data type, the istore instruction will not
be available.

7.5.64 istore_<n>
Store int into local variable

Format

Forms

istore_0 = 51 (0x33)
istore_1 = 52 (0x34)
istore_2 = 53 (0x35)
istore_3 = 54 (0x36)

Stack

…, value.word1, value.word2 ->
…

Description

Both <n> and <n> + 1 must be a valid indices into the local variables of the current
frame (Section 3.5, “Frames” on page 3-3). The value on top of the operand stack
must be of type int. It is popped from the operand stack, and the local variables at
index and index + 1 are set to value.

Notes

istore_<n>
7-62 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

If a virtual machine does not support the int data type, the istore_<n> instruction
will not be available.

7.5.65 isub
Subtract int

Format

Forms

isub = 68 (0x44)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. The int result is value1 - value2. The result is pushed onto the
operand stack.

For int subtraction, a – b produces the same result as a + (–b). For int values,
subtraction from zeros is the same as negation.

Despite the fact that overflow or underflow may occur, in which case the result may
have a different sign than the true mathematical result, execution of an isub
instruction never throws a runtime exception.

Notes

If a virtual machine does not support the int data type, the isub instruction will not
be available.

7.5.66 itableswitch
Access jump table by int index and jump

isub
Chapter 7 Java Card Virtual Machine Instruction Set 7-63

Format

Offset Format

Forms

itableswitch = 116 (0x74)

Stack

…, index ->
…

Description

An itableswitch instruction is a variable-length instruction. Immediately after the
itableswitch opcode follow a signed 16-bit value default, a signed 32-bit value low, a
signed 32-bit value high, and then high – low + 1 further signed 16-bit offsets. The
value low must be less than or equal to high. The high – low + 1 signed 16-bit offsets
are treated as a 0-based jump table. Each of the signed 16-bit values is constructed
from two unsigned bytes as (byte1 << 8) | byte2. Each of the signed 32-bit values is
constructed from four unsigned bytes as (byte1 << 24) | (byte2 << 16) | (byte3 << 8)
| byte4.

The index must be of type int and is popped from the stack. If index is less than low
or index is greater than high, then a target address is calculated by adding default to
the address of the opcode of this itableswitch instruction. Otherwise, the offset at

itableswitch

defaultbyte1

defaultbyte2

lowbyte1

lowbyte2

lowbyte3

lowbyte4

highbyte1

highbyte2

highbyte3

highbyte4

jump offsets…

offsetbyte1

offsetbyte2
7-64 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

position index – low of the jump table is extracted. The target address is calculated
by adding that offset to the address of the opcode of this itableswitch instruction.
Execution then continues at the target address.

The target addresses that can be calculated from each jump table offset, as well as
the one calculated from default, must be the address of an opcode of an instruction
within the method that contains this itableswitch instruction.

Notes

If a virtual machine does not support the int data type, the itableswitch instruction
will not be available.

7.5.67 iushr
Logical shift right int

Format

Forms

iushr = 82 (0x52)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. An int result is calculated by shifting the result right by s bit
positions, with zero extension, where s is the value of the low five bits of value2. The
result is pushed onto the operand stack.

Notes

If value1 is positive and s is value2 & 0x1f, the result is the same as that of value1 >>
s; if value1 is negative, the result is equal to the value of the expression (value1 >> s)
+ (2 << ~s). The addition of the (2 << ~s) term cancels out the propagated sign bit.
The shift distance actually used is always in the range 0 to 31, inclusive, as if value2
were subjected to a bitwise logical AND with the mask value 0x1f.

If a virtual machine does not support the int data type, the iushr instruction will not
be available.

iushr
Chapter 7 Java Card Virtual Machine Instruction Set 7-65

7.5.68 ixor
Boolean XOR int

Format

Forms

ixor = 88 (0x58)

Stack

…, value1.word1, value1.word2, value2.word1, value2.word2 ->
…, result.word1, result.word2

Description

Both value1 and value2 must be of type int. The values are popped from the
operand stack. An int result is calculated by taking the bitwise exclusive OR of
value1 and value2. The result is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the ixor instruction will not
be available.

7.5.69 jsr
Jump subroutine

Format

Forms

jsr = 113 (0x71)

Stack

… ->
…, address

ixor

jsr

branchbyte1

branchbyte2
7-66 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Description

The address of the opcode of the instruction immediately following this jsr
instruction is pushed onto the operand stack as a value of type returnAddress. The
unsigned branchbyte1 and branchbyte2 are used to construct a signed 16-bit offset,
where the offset is (branchbyte1 << 8) | branchbyte2. Execution proceeds at that
offset from the address of this jsr instruction. The target address must be that of an
opcode of an instruction within the method that contains this jsr instruction.

Notes

The jsr instruction is used with the ret instruction in the implementation of the
finally clause of the Java language. Note that jsr pushes the address onto the stack
and ret gets it out of a local variable. This asymmetry is intentional.

7.5.70 new
Create new object

Format

Forms

new = 143 (0x8f)

Stack

… ->
…, objectref

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The item at that index in the
constant pool must be of type CONSTANT_Classref (Section 6.7.1,
“CONSTANT_Classref” on page 6-16), a reference to a class or interface type. The
reference is resolved and must result in a class type (it must not result in an interface
type). Memory for a new instance of that class is allocated from the heap, and the
instance variables of the new object are initialized to their default initial values. The
objectref, a reference to the instance, is pushed onto the operand stack.

Notes

new

indexbyte1

indexbyte2
Chapter 7 Java Card Virtual Machine Instruction Set 7-67

The new instruction does not completely create a new instance; instance creation is
not completed until an instance initialization method has been invoked on the
uninitialized instance.

7.5.71 newarray
Create new array

Format

Forms

newarray = 144 (0x90)

Stack

…, count ->
…, arrayref

Description

The count must be of type short. It is popped off the operand stack. The count
represents the number of elements in the array to be created.

The unsigned byte atype is a code that indicates the type of array to create. It must
take one of the following values:

A new array whose components are of type atype, of length count, is allocated from
the heap. A reference arrayref to this new array object is pushed onto the operand
stack. All of the elements of the new array are initialized to the default initial value
for its type.

Runtime Exception

newarray

atype

TABLE 7-4 Array Values

Array Type atype

T_BOOLEAN 10

T_BYTE 11

T_SHORT 12

T_INT 13
7-68 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

If count is less than zero, the newarray instruction throws a
NegativeArraySizeException.

Notes

If a virtual machine does not support the int data type, the value of atype may not
be 13 (array type = T_INT).

7.5.72 nop
Do nothing

Format

Forms

nop = 0 (0x0)

Stack

No change

Description

Do nothing.

7.5.73 pop
Pop top operand stack word

Format

Forms

pop = 59 (0x3b)

Stack

…, word ->
…

Description

nop

pop
Chapter 7 Java Card Virtual Machine Instruction Set 7-69

The top word is popped from the operand stack. The pop instruction must not be
used unless the word contains a 16-bit data type.

Notes

The pop instruction operates on an untyped word, ignoring the type of data it
contains.

7.5.74 pop2
Pop top two operand stack words

Format

Forms

pop2 = 60 (0x3c)

Stack

…, word2, word1 ->
…

Description

The top two words are popped from the operand stack.

The pop2 instruction must not be used unless each of word1 and word2 is a word
that contains a 16-bit data type or both together are the two words of a single 32-bit
datum.

Notes

Except for restrictions preserving the integrity of 32-bit data types, the pop2
instruction operates on an untyped word, ignoring the type of data it contains.

7.5.75 putfield_<t>
Set field in object

pop2
7-70 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Format

Forms

putfield_a = 135 (0x87)
putfield_b = 136 (0x88)
putfield_s = 137 (0x89)
putfield_i = 138 (0x8a)

Stack

…, objectref, value ->
…

OR

…, objectref, value.word1, value.word2 ->
…

Description

The unsigned index is used as an index into the constant pool of the current package
(Section 3.5, “Frames” on page 3-3). The constant pool item at the index must be of
type CONSTANT_InstanceFieldref (Section 6.7.2, “CONSTANT_InstanceFieldref,
CONSTANT_VirtualMethodref, and CONSTANT_SuperMethodref” on page 6-18), a
reference to a class and a field token.

The class of objectref must not be an array. If the field is protected, and it is a
member of a superclass of the current class, and the field is not declared in the same
package as the current class, then the class of objectref must be either the current
class or a subclass of the current class. If the field is final, it must be declared in the
current class.

The item must resolve to a field with a type that matches t, as follows:

■ a field must be of type reference
■ b field must be of type byte or type boolean
■ s field must be of type short
■ i field must be of type int

value must be of a type that is assignment compatible with the field descriptor (t)
type.

putfield_<t>

index
Chapter 7 Java Card Virtual Machine Instruction Set 7-71

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset1. The objectref,
which must be of type reference, and the value are popped from the operand stack.
If the field is of type byte or type boolean, the value is truncated to a byte. The field
at the offset from the start of the object referenced by objectref is set to the value.

Runtime Exception

If objectref is null, the putfield_<t> instruction throws a NullPointerException.

Notes

In some circumstances, the putfield_<t> instruction may throw a SecurityException
if the current context Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the object referenced by objectref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the putfield_i instruction will
not be available.

7.5.76 putfield_<t>_this
Set field in current object

Format

Forms

putfield_a_this = 181 (0xb5)
putfield_b_this = 182 (0xb6)
putfield_s_this = 183 (0xb7)
putfield_i_this = 184 (0xb8)

Stack

…, value ->
…

OR

1. The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may
define any mapping from token value to offset into an instance.

putfield_<t>_this

index
7-72 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

…, value.word1, value.word2 ->
…

Description

The currently executing method must be an instance method that was invoked using
the invokevirtual, invokeinterface or invokespecial instruction. The local variable at
index 0 must contain a reference objectref to the currently executing method’s this
parameter. The unsigned index is used as an index into the constant pool of the
current package (Section 3.5, “Frames” on page 3-3). The constant pool item at the
index must be of type CONSTANT_InstanceFieldref (Section 6.7.2,
“CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref” on page 6-18), a reference to a class and a field
token.

The class of objectref must not be an array. If the field is protected, and it is a
member of a superclass of the current class, and the field is not declared in the same
package as the current class, then the class of objectref must be either the current
class or a subclass of the current class. If the field is final, it must be declared in the
current class.

The item must resolve to a field with a type that matches t, as follows:

■ a field must be of type reference
■ b field must be of type byte or type boolean
■ s field must be of type short
■ i field must be of type int

value must be of a type that is assignment compatible with the field descriptor (t)
type.

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset1. The value is
popped from the operand stack. If the field is of type byte or type boolean, the value
is truncated to a byte. The field at the offset from the start of the object referenced by
objectref is set to the value.

Runtime Exception

If objectref is null, the putfield_<t>_this instruction throws a NullPointerException.

Notes

1. The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may
define any mapping from token value to offset into an instance.
Chapter 7 Java Card Virtual Machine Instruction Set 7-73

In some circumstances, the putfield_<t>_this instruction may throw a
SecurityException if the current context (Section 3.4, “Contexts” on page 3-2) is not
the owning context (Section 3.4, “Contexts” on page 3-2) of the object referenced by
objectref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the putfield_i_this
instruction will not be available.

7.5.77 putfield_<t>_w
Set field in object (wide index)

Format

Forms

putfield_a_w = 177 (0xb1)
putfield_b_w = 178 (0xb2)
putfield_s_w = 179 (0xb3)
putfield_i_w = 180 (0xb4)

Stack

…, objectref, value ->
…

OR

…, objectref, value.word1, value.word2 ->
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at the
index must be of type CONSTANT_InstanceFieldref (Section 6.7.2,
“CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and
CONSTANT_SuperMethodref” on page 6-18), a reference to a class and a field
token.

putfield<t>_w

indexbyte1

indexbyte2
7-74 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The class of objectref must not be an array. If the field is protected, and it is a
member of a superclass of the current class, and the field is not declared in the same
package as the current class, then the class of objectref must be either the current
class or a subclass of the current class. If the field is final, it must be declared in the
current class.

The item must resolve to a field with a type that matches t, as follows:

■ a field must be of type reference
■ b field must be of type byte or type boolean
■ s field must be of type short
■ i field must be of type int

value must be of a type that is assignment compatible with the field descriptor (t)
type.

The width of a field in a class instance is determined by the field type specified in
the instruction. The item is resolved, determining the field offset1. The objectref,
which must be of type reference, and the value are popped from the operand stack.
If the field is of type byte or type boolean, the value is truncated to a byte. The field
at the offset from the start of the object referenced by objectref is set to the value.

Runtime Exception

If objectref is null, the putfield_<t>_w instruction throws a NullPointerException.

Notes

In some circumstances, the putfield_<t>_w instruction may throw a
SecurityException if the current context (Section 3.4, “Contexts” on page 3-2) is not
the owning context (Section 3.4, “Contexts” on page 3-2) of the object referenced by
objectref. The exact circumstances when the exception will be thrown are specified in
Chapter 6 of the Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the putfield_i_w instruction
will not be available.

7.5.78 putstatic_<t>
Set static field in class

1. The offset may be computed by adding the field token value to the size of an instance of the immediate
superclass. However, this method is not required by this specification. A Java Card virtual machine may
define any mapping from token value to offset into an instance.
Chapter 7 Java Card Virtual Machine Instruction Set 7-75

Format

Forms

putstatic_a = 127 (0x7f)
putstatic_b = 128 (0x80)
putstatic_s = 129 (0x81)
putstatic_i = 130 (0x82)

Stack

…, value ->
…

OR

…, value.word1, value.word2 ->
…

Description

The unsigned indexbyte1 and indexbyte2 are used to construct an index into the
constant pool of the current package (Section 3.5, “Frames” on page 3-3), where the
value of the index is (indexbyte1 << 8) | indexbyte2. The constant pool item at the
index must be of type CONSTANT_StaticFieldref (Section 6.7.3,
“CONSTANT_StaticFieldref and CONSTANT_StaticMethodref” on page 6-19), a
reference to a static field. If the field is final, it must be declared in the current class.

The item must resolve to a field with a type that matches t, as follows:

■ a field must be of type reference
■ b field must be of type byte or type boolean
■ s field must be of type short
■ i field must be of type int

value must be of a type that is assignment compatible with the field descriptor (t)
type.

The width of a class field is determined by the field type specified in the instruction.
The item is resolved, determining the class field. The value is popped from the
operand stack. If the field is of type byte or type boolean, the value is truncated to a
byte. The field is set to the value.

Notes

putstatic_<t>

indexbyte1

indexbyte2
7-76 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

In some circumstances, the putstatic_a instruction may throw a SecurityException if
the current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the object being stored in the field. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

If a virtual machine does not support the int data type, the putstatic_i instruction
will not be available.

7.5.79 ret
Return from subroutine

Format

Forms

ret = 114 (0x72)

Stack

No change

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (Section 3.5, “Frames” on page 3-3). The local variable at index
must contain a value of type returnAddress. The contents of the local variable are
written into the Java Card virtual machine’s pc register, and execution continues
there.

Notes

The ret instruction is used with the jsr instruction in the implementation of the
finally keyword of the Java language. Note that jsr pushes the address onto the stack
and ret gets it out of a local variable. This asymmetry is intentional.

The ret instruction should not be confused with the return instruction. A return
instruction returns control from a Java method to its invoker, without passing any
value back to the invoker.

ret

index
Chapter 7 Java Card Virtual Machine Instruction Set 7-77

7.5.80 return
Return void from method

Format

Forms

return = 122 (0x7a)

Stack

… ->
[empty]

Description

Any values on the operand stack of the current method are discarded. The virtual
machine then reinstates the frame of the invoker and returns control to the invoker.

7.5.81 s2b
Convert short to byte

Format

Forms

s2b = 91 (0x5b)

Stack

…, value ->
…, result

Description

The value on top of the operand stack must be of type short. It is popped from the
top of the operand stack, truncated to a byte result, then sign-extended to a short
result. The result is pushed onto the operand stack.

Notes

return

s2b
7-78 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The s2b instruction performs a narrowing primitive conversion. It may lose
information about the overall magnitude of value. The result may also not have the
same sign as value.

7.5.82 s2i
Convert short to int

Format

Forms

s2i = 92 (0x5c)

Stack

…, value ->
…, result.word1, result.word2

Description

The value on top of the operand stack must be of type short. It is popped from the
operand stack and sign-extended to an int result. The result is pushed onto the
operand stack.

Notes

The s2i instruction performs a widening primitive conversion. Because all values of
type short are exactly representable by type int, the conversion is exact.

If a virtual machine does not support the int data type, the s2i instruction will not be
available.

7.5.83 sadd
Add short

Format

Forms

sadd = 65 (0x41)

s2i

sadd
Chapter 7 Java Card Virtual Machine Instruction Set 7-79

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is value1 + value2. The result is pushed onto the
operand stack.

If a sadd instruction overflows, then the result is the low-order bits of the true
mathematical result in a sufficiently wide two’s-complement format. If overflow
occurs, then the sign of the result may not be the same as the sign of the
mathematical sum of the two values.

7.5.84 saload
Load short from array

Format

Forms

saload = 38 (0x46)

Stack

…, arrayref, index ->
…, value

Description

The arrayref must be of type reference and must refer to an array whose components
are of type short. The index must be of type short. Both arrayref and index are
popped from the operand stack. The short value in the component of the array at
index is retrieved and pushed onto the top of the operand stack.

Runtime Exceptions

If arrayref is null, saload throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
saload instruction throws an ArrayIndexOutOfBoundsException.

Notes

saload
7-80 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

In some circumstances, the saload instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.85 sand
Boolean AND short

Format

Forms

sand = 83 (0x53)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 are popped from the operand stack. A short result is
calculated by taking the bitwise AND (conjunction) of value1 and value2. The result
is pushed onto the operand stack.

7.5.86 sastore
Store into short array

Format

Forms

sastore = 57 (0x39)

Stack

…, arrayref, index, value ->
…

sand

sastore
Chapter 7 Java Card Virtual Machine Instruction Set 7-81

Description

The arrayref must be of type reference and must refer to an array whose components
are of type short. The index and value must both be of type short. The arrayref,
index and value are popped from the operand stack. The short value is stored as the
component of the array indexed by index.

Runtime Exception

If arrayref is null, sastore throws a NullPointerException.

Otherwise, if index is not within the bounds of the array referenced by arrayref, the
sastore instruction throws an ArrayIndexOutOfBoundsException.

Notes

In some circumstances, the sastore instruction may throw a SecurityException if the
current context (Section 3.4, “Contexts” on page 3-2) is not the owning context
(Section 3.4, “Contexts” on page 3-2) of the array referenced by arrayref. The exact
circumstances when the exception will be thrown are specified in Chapter 6 of the
Runtime Environment Specification, Java Card Platform, Version 2.2.2.

7.5.87 sconst_<s>
Push short constant

Format

Forms

sconst_m1 = 2 (0x2)
sconst_0 = 3 (0x3)
sconst_1 = 4 (0x4)
sconst_2 = 5 (0x5)
sconst_3 = 6 (0x6)
sconst_4= 7 (0x7)
sconst_5 = 8 (0x8)

Stack

… ->
…, <s>

Description

Push the short constant <s> (-1, 0, 1, 2, 3, 4, or 5) onto the operand stack.

sconst_<s>
7-82 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

7.5.88 sdiv
Divide short

Format

Forms

sdiv = 71 (0x47)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is the value of the Java expression value1 / value2.
The result is pushed onto the operand stack.

A short division rounds towards 0; that is, the quotient produced for short values in
n/d is a short value q whose magnitude is as large as possible while satisfying | d ·
q | <= | n |. Moreover, q is a positive when | n | >= | d | and n and d have the
same sign, but q is negative when | n | >= | d | and n and d have opposite signs.

There is one special case that does not satisfy this rule: if the dividend is the negative
integer of the largest possible magnitude for the short type, and the divisor is –1,
then overflow occurs, and the result is equal to the dividend. Despite the overflow,
no exception is thrown in this case.

Runtime Exception

If the value of the divisor in a short division is 0, sdiv throws an
ArithmeticException.

7.5.89 sinc
Increment local short variable by constant

sdiv
Chapter 7 Java Card Virtual Machine Instruction Set 7-83

Format

Forms

sinc = 89 (0x59)

Stack

No change

Description

The index is an unsigned byte that must be a valid index into the local variable of
the current frame (Section 3.5, “Frames” on page 3-3). The const is an immediate
signed byte. The local variable at index must contain a short. The value const is first
sign-extended to a short, then the local variable at index is incremented by that
amount.

7.5.90 sinc_w
Increment local short variable by constant

Format

Forms

sinc_w = 150 (0x96)

Stack

No change

Description

sinc

index

const

sinc_w

index

byte1

byte2
7-84 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

The index is an unsigned byte that must be a valid index into the local variable of
the current frame (Section 3.5, “Frames” on page 3-3). The immediate unsigned
byte1 and byte2 values are assembled into a short const where the value of const is
(byte1 << 8) | byte2. The local variable at index, which must contain a short, is
incremented by const.

7.5.91 sipush
Push short

Format

Forms

sipush = 19 (0x13)

Stack

… ->
…, value1.word1, value1.word2

Description

The immediate unsigned byte1 and byte2 values are assembled into a signed short
where the value of the short is (byte1 << 8) | byte2. The intermediate value is then
sign-extended to an int, and the resulting value is pushed onto the operand stack.

Notes

If a virtual machine does not support the int data type, the sipush instruction will
not be available.

7.5.92 sload
Load short from local variable

Format

sipush

byte1

byte2

sload

index
Chapter 7 Java Card Virtual Machine Instruction Set 7-85

Forms

sload = 22 (0x16)

Stack

… ->
…, value

Description

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (Section 3.5, “Frames” on page 3-3). The local variable at index
must contain a short. The value in the local variable at index is pushed onto the
operand stack.

7.5.93 sload_<n>
Load short from local variable

Format

Forms

sload_0 = 28 (0x1c)
sload_1 = 29 (0x1d)
sload_2 = 30 (0x1e)
sload_3 = 31 (0x1f)

Stack

… ->
…, value

Description

The <n> must be a valid index into the local variables of the current frame
(Section 3.5, “Frames” on page 3-3). The local variable at <n> must contain a short.
The value in the local variable at <n> is pushed onto the operand stack.

Notes

Each of the sload_<n> instructions is the same as sload with an index of <n>, except
that the operand <n> is implicit.

sload_<n>
7-86 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

7.5.94 slookupswitch
Access jump table by key match and jump

Format

Pair Format

Forms

slookupswitch = 117 (0x75)

Stack

…, key ->
…

Description

A slookupswitch instruction is a variable-length instruction. Immediately after the
slookupswitch opcode follow a signed 16-bit value default, an unsigned 16-bit value
npairs, and then npairs pairs. Each pair consists of a short match and a signed 16-bit
offset. Each of the signed 16-bit values is constructed from two unsigned bytes as
(byte1 << 8) | byte2.

The table match-offset pairs of the slookupswitch instruction must be sorted in
increasing numerical order by match.

The key must be of type short and is popped from the operand stack and compared
against the match values. If it is equal to one of them, then a target address is
calculated by adding the corresponding offset to the address of the opcode of this

slookupswitch

defaultbyte1

defaultbyte2

npairs1

npairs2

match-offset pairs…

matchbyte1

matchbyte2

offsetbyte1

offsetbyte2
Chapter 7 Java Card Virtual Machine Instruction Set 7-87

slookupswitch instruction. If the key does not match any of the match values, the
target address is calculated by adding default to the address of the opcode of this
slookupswitch instruction. Execution then continues at the target address.

The target address that can be calculated from the offset of each match-offset pair, as
well as the one calculated from default, must be the address of an opcode of an
instruction within the method that contains this slookupswitch instruction.

Notes

The match-offset pairs are sorted to support lookup routines that are quicker than
linear search.

7.5.95 smul
Multiply short

Format

Forms

smul = 69 (0x45)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is value1 * value2. The result is pushed onto the
operand stack.

If a smul instruction overflows, then the result is the low-order bits of the
mathematical product as a short. If overflow occurs, then the sign of the result may
not be the same as the sign of the mathematical product of the two values.

7.5.96 sneg
Negate short

smul
7-88 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Format

Forms

sneg = 72 (0x4b)

Stack

…, value ->
…, result

Description

The value must be of type short. It is popped from the operand stack. The short
result is the arithmetic negation of value, -value. The result is pushed onto the
operand stack.

For short values, negation is the same as subtraction from zero. Because the Java
Card virtual machine uses two’s-complement representation for integers and the
range of two’s-complement values is not symmetric, the negation of the maximum
negative short results in that same maximum negative number. Despite the fact that
overflow has occurred, no exception is thrown.

For all short values x, -x equals (~x) + 1.

7.5.97 sor
Boolean OR short

Format

Forms

sor = 85 (0x55)

Stack

…, value1, value2 ->
…, result

Description

sneg

sor
Chapter 7 Java Card Virtual Machine Instruction Set 7-89

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by taking the bitwise inclusive OR of
value1 and value2. The result is pushed onto the operand stack.

7.5.98 srem
Remainder short

Format

Forms

srem = 73 (0x49)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is the value of the Java expression value1 – (value1 /
value2) * value2. The result is pushed onto the operand stack.

The result of the irem instruction is such that (a/b)*b + (a%b) is equal to a. This
identity holds even in the special case that the dividend is the negative short of
largest possible magnitude for its type and the divisor is –1 (the remainder is 0). It
follows from this rule that the result of the remainder operation can be negative only
if the dividend is negative and can be positive only if the dividend is positive.
Moreover, the magnitude of the result is always less than the magnitude of the
divisor.

Runtime Exception

If the value of the divisor for a short remainder operator is 0, srem throws an
ArithmeticException.

7.5.99 sreturn
Return short from method

srem
7-90 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Format

Forms

sreturn = 120 (0x78)

Stack

…, value ->
[empty]

Description

The value must be of type short. It is popped from the operand stack of the current
frame (Section 3.5, “Frames” on page 3-3) and pushed onto the operand stack of the
frame of the invoker. Any other values on the operand stack of the current method
are discarded.

The virtual machine then reinstates the frame of the invoker and returns control to
the invoker.

7.5.100 sshl
Shift left short

Format

Forms

sshl = 77 (0x4d)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by shifting value1 left by s bit positions,
where s is the value of the low five bits of value2. The result is pushed onto the
operand stack.

Notes

sreturn

sshl
Chapter 7 Java Card Virtual Machine Instruction Set 7-91

This is equivalent (even if overflow occurs) to multiplication by 2 to the power s.
The shift distance actually used is always in the range 0 to 31, inclusive, as if value2
were subjected to a bitwise logical AND with the mask value 0x1f.

The mask value of 0x1f allows shifting beyond the range of a 16-bit short value. It is
used by this instruction, however, to ensure results equal to those generated by the
Java instruction ishl.

7.5.101 sshr
Arithmetic shift right short

Format

Forms

sshr = 79 (0x4f)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by shifting value1 right by s bit positions,
with sign extension, where s is the value of the low five bits of value2. The result is
pushed onto the operand stack.

Notes

The resulting value is Î(value1) / 2s°, where s is value2 & 0x1f. For nonnegative
value1, this is equivalent (even if overflow occurs) to truncating short division by 2
to the power s. The shift distance actually used is always in the range 0 to 31,
inclusive, as if value2 were subjected to a bitwise logical AND with the mask value
0x1f.

The mask value of 0x1f allows shifting beyond the range of a 16-bit short value. It is
used by this instruction, however, to ensure results equal to those generated by the
Java instruction ishr.

sshr
7-92 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

7.5.102 sspush
Push short

Format

Forms

sspush = 17 (0x11)

Stack

… ->
…, value

Description

The immediate unsigned byte1 and byte2 values are assembled into a signed short
where the value of the short is (byte1 << 8) | byte2. The resulting value is pushed
onto the operand stack.

7.5.103 sstore
Store short into local variable

Format

Forms

sstore = 41 (0x29)

Stack

…, value ->
…

Description

sspush

byte1

byte2

sstore

index
Chapter 7 Java Card Virtual Machine Instruction Set 7-93

The index is an unsigned byte that must be a valid index into the local variables of
the current frame (Section 3.5, “Frames” on page 3-3). The value on top of the
operand stack must be of type short. It is popped from the operand stack, and the
value of the local variable at index is set to value.

7.5.104 sstore_<n>
Store short into local variable

Format

Forms

sstore_0 = 47 (0x2f)
sstore_1 = 48 (0x30)
sstore_2 = 49 (0x31)
sstore_3 = 50 (0x32)

Stack

…, value ->
…

Description

The <n> must be a valid index into the local variables of the current frame
(Section 3.5, “Frames” on page 3-3). The value on top of the operand stack must be
of type short. It is popped from the operand stack, and the value of the local variable
at <n> is set to value.

7.5.105 ssub
Subtract short

Format

Forms

ssub = 67 (0x43)

Stack

sstore_<n>

ssub
7-94 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. The short result is value1 - value2. The result is pushed onto the
operand stack.

For short subtraction, a – b produces the same result as a + (–b). For short values,
subtraction from zeros is the same as negation.

Despite the fact that overflow or underflow may occur, in which case the result may
have a different sign than the true mathematical result, execution of a ssub
instruction never throws a runtime exception.

7.5.106 stableswitch
Access jump table by short index and jump

Format

Offset Format

Forms

stableswitch = 115 (0x73)

Stack

stableswitch

defaultbyte1

defaultbyte2

lowbyte1

lowbyte2

highbyte1

highbyte2

jump offsets…

offsetbyte1

offsetbyte2
Chapter 7 Java Card Virtual Machine Instruction Set 7-95

…, index ->
…

Description

A stableswitch instruction is a variable-length instruction. Immediately after the
stableswitch opcode follow a signed 16-bit value default, a signed 16-bit value low, a
signed 16-bit value high, and then high – low + 1 further signed 16-bit offsets. The
value low must be less than or equal to high. The high – low + 1 signed 16-bit offsets
are treated as a 0-based jump table. Each of the signed 16-bit values is constructed
from two unsigned bytes as (byte1 << 8) | byte2.

The index must be of type short and is popped from the stack. If index is less than
low or index is greater than high, than a target address is calculated by adding
default to the address of the opcode of this stableswitch instruction. Otherwise, the
offset at position index – low of the jump table is extracted. The target address is
calculated by adding that offset to the address of the opcode of this stableswitch
instruction. Execution then continues at the target address.

The target addresses that can be calculated from each jump table offset, as well as
the one calculated from default, must be the address of an opcode of an instruction
within the method that contains this stableswitch instruction.

7.5.107 sushr
Logical shift right short

Format

Forms

sushr = 81 (0x51)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by sign-extending value1 to 32 bits1 and
shifting the result right by s bit positions, with zero extension, where s is the value
of the low five bits of value2. The resulting value is then truncated to a 16-bit result.
The result is pushed onto the operand stack.

sushr
7-96 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Notes

If value1 is positive and s is value2 & 0x1f, the result is the same as that of value1 >>
s; if value1 is negative, the result is equal to the value of the expression (value1 >> s)
+ (2 << ~s). The addition of the (2 << ~s) term cancels out the propagated sign bit.
The shift distance actually used is always in the range 0 to 31, inclusive, as if value2
were subjected to a bitwise logical AND with the mask value 0x1f.

The mask value of 0x1f allows shifting beyond the range of a 16-bit short value. It is
used by this instruction, however, to ensure results equal to those generated by the
Java instruction iushr.

7.5.108 swap_x
Swap top two operand stack words

Format

Forms

swap_x = 64 (0x40)

Stack

…, wordM+N, …, wordM+1, wordM, …, word1 ->
…, wordM, …, word1, wordM+N, …, wordM+1

Description

The unsigned byte mn is used to construct two parameter values. The high nibble,
(mn & 0xf0) >> 4, is used as the value m. The low nibble, (mn & 0xf), is used as the
value n. Permissible values for both m and n are 1 and 2.

The top m words on the operand stack are swapped with the n words immediately
below.

The swap_x instruction must not be used unless the ranges of words 1 through m
and words m+1 through n each contain either a 16-bit data type, two 16-bit data
types, a 32-bit data type, a 16-bit data type and a 32-bit data type (in either order), or
two 32-bit data types.

1. Sign extension to 32 bits ensures that the result computed by this instruction will be exactly equal to that
computed by the Java iushr instruction, regardless of the input values. In a Java Card virtual machine the
expression “0xffff >>> 0x01” yields 0xffff, where “>>>” is performed by the sushr instruction. The same
result is rendered by a Java virtual machine.

swap_x

mn
Chapter 7 Java Card Virtual Machine Instruction Set 7-97

Notes

Except for restrictions preserving the integrity of 32-bit data types, the swap_x
instruction operates on untyped words, ignoring the types of data they contain.

If a virtual machine does not support the int data type, the only permissible value
for both m and n is 1.

7.5.109 sxor
Boolean XOR short

Format

Forms

sxor = 87 (0x57)

Stack

…, value1, value2 ->
…, result

Description

Both value1 and value2 must be of type short. The values are popped from the
operand stack. A short result is calculated by taking the bitwise exclusive OR of
value1 and value2. The result is pushed onto the operand stack.

sxor
7-98 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

CHAPTER 8

Tables of Instructions

The following pages contain lists of the APDU instructions recognized by the Java
Card platform, organized by opcode value (TABLE 8-1) and by opcode mnemonic
(TABLE 8-2).

TABLE 8-1 Instructions by Opcode Value

dec hex mnemonic dec hex mnemonic

0 00 nop 47 2F sstore_0

1 01 aconst_null 48 30 sstore_1

2 02 sconst_m1 49 31 sstore_2

3 03 sconst_0 50 32 sstore_3

4 04 sconst_1 51 33 istore_0

5 05 sconst_2 52 34 istore_1

6 06 sconst_3 53 35 istore_2

7 07 sconst_4 54 36 istore_3

8 08 sconst_5 55 37 aastore

9 09 iconst_m1 56 38 bastore

10 0A iconst_0 57 39 sastore

11 0B iconst_1 58 3A iastore

12 0C iconst_2 59 3B pop

13 0D iconst_3 60 3C pop2

14 0E iconst_4 61 3D dup

15 0F iconst_5 62 3E dup2

16 10 bspush 63 3F dup_x

17 11 sspush 64 40 swap_x
8-1

18 12 bipush 65 41 sadd

19 13 sipush 66 42 iadd

20 14 iipush 67 43 ssub

21 15 aload 68 44 isub

22 16 sload 69 45 smul

23 17 iload 70 46 imul

24 18 aload_0 71 47 sdiv

25 19 aload_1 72 48 idiv

26 1A aload_2 73 49 srem

27 1B aload_3 74 4A irem

28 1C sload_0 75 4B sneg

29 1D sload_1 76 4C ineg

30 1E sload_2 77 4D sshl

31 1F sload_3 78 4E ishl

32 20 iload_0 79 4F sshr

33 21 iload_1 80 50 ishr

34 22 iload_2 81 51 sushr

35 23 iload_3 82 52 iushr

36 24 aaload 83 53 sand

37 25 baload 84 54 iand

38 26 saload 85 55 sor

39 27 iaload 86 56 ior

40 28 astore 87 57 sxor

41 29 sstore 88 58 ixor

42 2A istore 89 59 sinc

43 2B astore_0 90 5A iinc

44 2C astore_1 91 5B s2b

45 2D astore_2 92 5C s2i

46 2E astore_3 93 5D i2b

94 5E i2s 141 8D invokestatic

TABLE 8-1 Instructions by Opcode Value (Continued)

dec hex mnemonic dec hex mnemonic
8-2 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

95 5F icmp 142 8E invokeinterface

96 60 ifeq 143 8F new

97 61 ifne 144 90 newarray

98 62 iflt 145 91 anewarray

99 63 ifge 146 92 arraylength

100 64 ifgt 147 93 athrow

101 65 ifle 148 94 checkcast

102 66 ifnull 149 95 instanceof

103 67 ifnonnull 150 96 sinc_w

104 68 if_acmpeq 151 97 iinc_w

105 69 if_acmpne 152 98 ifeq_w

106 6A if_scmpeq 153 99 ifne_w

107 6B if_scmpne 154 9A iflt_w

108 6C if_scmplt 155 9B ifge_w

109 6D if_scmpge 156 9C ifgt_w

110 6E if_scmpgt 157 9D ifle_w

111 6F if_scmple 158 9E ifnull_w

112 70 goto 159 9F ifnonnull_w

113 71 jsr 160 A0 if_acmpeq_w

114 72 ret 161 A1 if_acmpne_w

115 73 stableswitch 162 A2 if_scmpeq_w

116 74 itableswitch 163 A3 if_scmpne_w

117 75 slookupswitch 164 A4 if_scmplt_w

118 76 ilookupswitch 165 A5 if_scmpge_w

119 77 areturn 166 A6 if_scmpgt_w

120 78 sreturn 167 A7 if_scmple_w

121 79 ireturn 168 A8 goto_w

122 7A return 169 A9 getfield_a_w

123 7B getstatic_a 170 AA getfield_b_w

124 7C getstatic_b 171 AB getfield_s_w

TABLE 8-1 Instructions by Opcode Value (Continued)

dec hex mnemonic dec hex mnemonic
Chapter 8 Tables of Instructions 8-3

125 7D getstatic_s 172 AC getfield_i_w

126 7E getstatic_i 173 AD getfield_a_this

127 7F putstatic_a 174 AE getfield_b_this

128 80 putstatic_b 175 AF getfield_s_this

129 81 putstatic_s 176 B0 getfield_i_this

130 82 putstatic_i 177 B1 putfield_a_w

131 83 getfield_a 178 B2 putfield_b_w

132 84 getfield_b 179 B3 putfield_s_w

133 85 getfield_s 180 B4 putfield_i_w

134 86 getfield_i 181 B5 putfield_a_this

135 87 putfield_a 182 B6 putfield_b_this

136 88 putfield_b 183 B7 putfield_s_this

137 89 putfield_s 184 B8 putfield_i_this

138 8A putfield_i …

139 8B invokevirtual 254 FE impdep1

140 8C invokespecial 255 FF impdep2

TABLE 8-2 Instructions by Opcode Mnemonic

mnemonic dec hex mnemonic dec hex

aaload 36 24 iand 84 54

aastore 55 37 iastore 58 3A

aconst_null 1 01 icmp 95 5F

aload 21 15 iconst_0 10 0A

aload_0 24 18 iconst_1 11 0B

aload_1 25 19 iconst_2 12 0C

aload_2 26 1A iconst_3 13 0D

aload_3 27 1B iconst_4 14 0E

anewarray 145 91 iconst_5 15 0F

areturn 119 77 iconst_m1 9 09

TABLE 8-1 Instructions by Opcode Value (Continued)

dec hex mnemonic dec hex mnemonic
8-4 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

arraylength 146 92 idiv 72 48

astore 40 28 if_acmpeq 104 68

astore_0 43 2B if_acmpeq_w 160 A0

astore_1 44 2C if_acmpne 105 69

astore_2 45 2D if_acmpne_w 161 A1

astore_3 46 2E if_scmpeq 106 6A

athrow 147 93 if_scmpeq_w 162 A2

baload 37 25 if_scmpge 109 6D

bastore 56 38 if_scmpge_w 165 A5

bipush 18 12 if_scmpgt 110 6E

bspush 16 10 if_scmpgt_w 166 A6

checkcast 148 94 if_scmple 111 6F

dup 61 3D if_scmple_w 167 A7

dup_x 63 3F if_scmplt 108 6C

dup2 62 3E if_scmplt_w 164 A4

getfield_a 131 83 if_scmpne 107 6B

getfield_a_this 173 AD if_scmpne_w 163 A3

getfield_a_w 169 A9 ifeq 96 60

getfield_b 132 84 ifeq_w 152 98

getfield_b_this 174 AE ifge 99 63

getfield_b_w 170 AA ifge_w 155 9B

getfield_i 134 86 ifgt 100 64

getfield_i_this 176 B0 ifgt_w 156 9C

getfield_i_w 172 AC ifle 101 65

getfield_s 133 85 ifle_w 157 9D

getfield_s_this 175 AF iflt 98 62

getfield_s_w 171 AB iflt_w 154 9A

getstatic_a 123 7B ifne 97 61

getstatic_b 124 7C ifne_w 153 99

getstatic_i 126 7E ifnonnull 103 67

TABLE 8-2 Instructions by Opcode Mnemonic (Continued)

mnemonic dec hex mnemonic dec hex
Chapter 8 Tables of Instructions 8-5

getstatic_s 125 7D ifnonnull_w 159 9F

goto 112 70 ifnull 102 66

goto_w 168 A8 ifnull_w 158 9E

i2b 93 5D iinc 90 5A

i2s 94 5E iinc_w 151 97

iadd 66 42 iipush 20 14

iaload 39 27 iload 23 17

iload_0 32 20 putstatic_s 129 81

iload_1 33 21 ret 114 72

iload_2 34 22 return 122 7A

iload_3 35 23 s2b 91 5B

ilookupswitch 118 76 s2i 92 5C

imul 70 46 sadd 65 41

ineg 76 4C saload 38 26

instanceof 149 95 sand 83 53

invokeinterface 142 8E sastore 57 39

invokespecial 140 8C sconst_0 3 03

invokestatic 141 8D sconst_1 4 04

invokevirtual 139 8B sconst_2 5 05

ior 86 56 sconst_3 6 06

irem 74 4A sconst_4 7 07

ireturn 121 79 sconst_5 8 08

ishl 78 4E sconst_m1 2 02

ishr 80 50 sdiv 71 47

istore 42 2A sinc 89 59

istore_0 51 33 sinc_w 150 96

istore_1 52 34 sipush 19 13

istore_2 53 35 sload 22 16

istore_3 54 36 sload_0 28 1C

isub 68 44 sload_1 29 1D

TABLE 8-2 Instructions by Opcode Mnemonic (Continued)

mnemonic dec hex mnemonic dec hex
8-6 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

itableswitch 116 74 sload_2 30 1E

iushr 82 52 sload_3 31 1F

ixor 88 58 slookupswitch 117 75

jsr 113 71 smul 69 45

new 143 8F sneg 75 4B

newarray 144 90 sor 85 55

nop 0 00 srem 73 49

pop 59 3B sreturn 120 78

pop2 60 3C sshl 77 4D

putfield_a 135 87 sshr 79 4F

putfield_a_this 181 B5 sspush 17 11

putfield_a_w 177 B1 sstore 41 29

putfield_b 136 88 sstore_0 47 2F

putfield_b_this 182 B6 sstore_1 48 30

putfield_b_w 178 B2 sstore_2 49 31

putfield_i 138 8A sstore_3 50 32

putfield_i_this 184 B8 ssub 67 43

putfield_i_w 180 B4 stableswitch 115 73

putfield_s 137 89 sushr 81 51

putfield_s_this 183 B7 swap_x 64 40

putfield_s_w 179 B3 sxor 87 57

putstatic_a 127 7F

putstatic_b 128 80

putstatic_i 130 82

TABLE 8-2 Instructions by Opcode Mnemonic (Continued)

mnemonic dec hex mnemonic dec hex
Chapter 8 Tables of Instructions 8-7

8-8 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Glossary

active applet
instance an applet instance that is selected on at least one of the logical channels.

AID (application
identifier) defined by ISO 7816, a string used to uniquely identify card applications and

certain types of files in card file systems. An AID consists of two distinct
pieces: a 5-byte RID (resource identifier) and a 0 to 11-byte PIX (proprietary
identifier extension). The RID is a resource identifier assigned to companies by
ISO. The PIX identifiers are assigned by companies.

A unique AID is assigned for each package. In addition, a unique AID is
assigned for each applet in the package. The package AID and the default AID
for each applet defined in the package are specified in the CAP file. They are
supplied to the converter when the CAP file is generated.

APDU an acronym for Application Protocol Data Unit as defined in ISO 7816-4.

API an acronym for Application Programming Interface. The API defines calling
conventions by which an application program accesses the operating system
and other services.

applet within the context of this document, a Java Card applet, which is the basic unit
of selection, context, functionality, and security in Java Card technology.

applet developer a person creating an applet using Java Card technology.

applet execution
context context of a package that contains currently active applet.

applet firewall the mechanism that prevents unauthorized accesses to objects in contexts other
than currently active context.

applet package see library package.

assigned logical
channel the logical channel on which the applet instance is either the active applet

instance or will become the active applet instance.
Glossary-1

atomic operation an operation that either completes in its entirety or no part of the operation
completes at all.

atomicity state in which a particular operation is atomic. Atomicity of data updates
guarantee that data are not corrupted in case of power loss or card removal.

ATR an acronym for Answer to Reset. An ATR is a string of bytes sent by the Java
Card platform after a reset condition.

basic logical channel logical channel 0, the only channel that is active at card reset. This channel is
permanent and can never be closed.

big-endian a technique of storing multibyte data where the high-order bytes come first.
For example, given an 8-bit data item stored in big-endian order, the first bit
read is considered the high bit.

binary compatibility in a Java Card system, a change in a Java programming language package
results in a new CAP file. A new CAP file is binary compatible with
(equivalently, does not break compatibility with) a preexisting CAP file if
another CAP file converted using the export file of the preexisting CAP file can
link with the new CAP file without errors.

bytecode machine-independent code generated by the compiler and executed by the Java
virtual machine.

CAD an acronym for Card Acceptance Device. The CAD is the device in which the
card is inserted.

CAP file the CAP file is produced by the Converter and is the standard file format for the
binary compatibility of the Java Card platform. A CAP file contains an
executable binary representation of the classes of a Java programming
language package. The CAP file also contains the CAP file components (see also
CAP file component). The CAP files produced by the converter are contained in
Java™ Archive (JAR) files.

CAP file component a Java Card platform CAP file consists of a set of components which represent a
Java programming language package. Each component describes a set of
elements in the Java programming language package, or an aspect of the CAP
file. A complete CAP file must contain all of the required components: Header,
Directory, Import, Constant Pool, Method, Static Field, and Reference Location

The following components are optional: the Applet, Export, and Debug. The
Applet component is included only if one or more Applets are defined in the
package. The Export component is included only if classes in other packages
may import elements in the package defined. The Debug component is
optional. It contains all of the data necessary for debugging a package.

card session a card session begins with the insertion of the card into the CAD. The card is
then able to exchange streams of APDUs with the CAD. The card session ends
when the card is removed from the CAD.

cast the explicit conversion from one data type to another.
Glossary-2 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

constant pool the constant pool contains variable-length structures representing various
string constants, class names, field names, and other constants referred to
within the CAP file and the Export File structure. Each of the constant pool
entries, including entry zero, is a variable-length structure whose format is
indicated by its first tag byte. There are no ordering constraints on entries in
the constant pool entries. One constant pool is associated with each package.

There are differences between the Java platform constant pool and the Java
Card technology-based constant pool. For example, in the Java platform
constant pool there is one constant type for method references, while in the
Java Card constant pool, there are three constant types for method references.
The additional information provided by a constant type in Java Card
technologies simplifies resolution of references.

context protected object space associated with each applet package and Java Card RE.
All objects owned by an applet belong to context of the applet's package.

context switch a change from one currently active context to another. For example, a context
switch is caused by an attempt to access an object that belongs to an applet
instance that resides in a different package. The result of a context switch is a
new currently active context.

Converter a piece of software that preprocesses all of the Java programming language
class files that make up a package, and converts the package to a CAP file. The
Converter also produces an export file.

currently active
context when an object instance method is invoked, an owning context of this object

becomes the currently active context.

currently selected
applet the Java Card RE keeps track of the currently selected Java Card applet. Upon

receiving a SELECT FILE command with this applet’s AID, the Java Card RE
makes this applet the currently selected applet. The Java Card RE sends all
APDU commands to the currently selected applet.

custom CAP file
component a new component added to the CAP file. The new component must conform to

the general component format. It is silently ignored by a Java Card virtual
machine that does not recognize the component. The identifiers associated
with the new component are recorded in the custom_component item of the
CAP file's Directory component.

default applet an applet that is selected by default on a logical channel when it is opened. If
an applet is designated the default applet on a particular logical channel on the
Java Card platform, it becomes the active applet by default when that logical
channel is opened using the basic channel.

EEPROM an acronym for Electrically Erasable, Programmable Read Only Memory.

entry point objects see Java Card RE entry point objects.
Glossary-3

Export file a file produced by the Converter that represents the fields and methods of a
package that can be imported by classes in other packages.

externally visible in the Java Card platform, any classes, interfaces, their constructors, methods,
and fields that can be accessed from another package according to the Java
programming language semantics, as defined by the Java Language Specification,
and Java Card API package access control restrictions (see Java Language
Specification, section 2.2.1.1).

Externally visible items may be represented in an export file. For a library
package, all externally visible items are represented in an export file. For an
applet package, only those externally visible items that are part of a shareable
interface are represented in an export file.

finalization the process by which a Java virtual machine (VM) allows an unreferenced
object instance to release non-memory resources (for example, close and open
files) prior to reclaiming the object's memory. Finalization is only performed on
an object when that object is ready to be garbage collected (meaning, there are
no references to the object).

Finalization is not supported by the Java Card virtual machine. The method
finalize() is not called automatically by the Java Card virtual machine.

firewall see applet firewall.

flash memory a type of persistent mutable memory. It is more efficient in space and power
than EPROM. Flash memory can be read bit by bit but can be updated only as
a block. Thus, flash memory is typically used for storing additional programs
or large chunks of data that are updated as a whole.

framework the set of classes that implement the API. This includes core and extension
packages. Responsibilities include applet selection, sending APDU bytes, and
managing atomicity.

garbage collection the process by which dynamically allocated storage is automatically reclaimed
during the execution of a program.

heap a common pool of free memory usable by a program. A part of the computer's
memory used for dynamic memory allocation, in which blocks of memory are
used in an arbitrary order. The Java Card virtual machine's heap is not required
to be garbage collected. Objects allocated from the heap are not necessarily
reclaimed.

installer the on-card mechanism to download and install CAP files. The installer receives
executable binary from the off-card installation program, writes the binary into
the smart card memory, links it with the other classes on the card, and creates
and initializes any data structures used internally by the Java Card Runtime
Environment.

installation program the off-card mechanism that employs a card acceptance device (CAD) to
transmit the executable binary in a CAP file to the installer running on the card.
Glossary-4 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

instance variables also known as non-static fields.

instantiation in object-oriented programming, to produce a particular object from its class
template. This involves allocation of a data structure with the types specified
by the template, and initialization of instance variables with either default
values or those provided by the class’s constructor function.

instruction a statement that indicates an operation for the computer to perform and any
data to be used in performing the operation. An instruction can be in machine
language or a programming language.

internally visible items that are not externally visible. These items are not described in a
package’s export file, but some such items use private tokens to represent
internal references. See also externally visible.

JAR file an acronym for Java Archive file, which is a file format used for aggregating
many files into one.

Java Card Platform
Remote Method

Invocation a subset of the Java Platform Remote Method Invocation (RMI) system. It
provides a mechanism for a client application running on the CAD platform to
invoke a method on a remote object on the card.

Java Card Runtime
Environment (Java

Card RE) consists of the Java Card virtual machine, the framework, and the associated
native methods.

Java Card Virtual
Machine (Java Card

VM) a subset of the Java virtual machine, which is designed to be run on smart
cards and other resource-constrained devices. The Java Card VM acts an engine
that loads Java class files and executes them with a particular set of semantics.

Java Card RE entry
point objects objects owned by the Java Card RE context that contain entry point methods.

These methods can be invoked from any context and allow non-privileged
users (applets) to request privileged Java Card RE system services. Java Card
RE entry point objects can be either temporary or permanent:

temporary - references to temporary Java Card RE entry point objects cannot
be stored in class variables, instance variables or array components. The Java
Card RE detects and restricts attempts to store references to these objects as
part of the firewall functionality to prevent unauthorized reuse. Examples of
these objects are APDU objects and all Java Card RE-owned exception objects.

permanent - references to permanent Java Card RE entry point objects can be
stored and freely reused. Examples of these objects are Java Card RE-owned
AID instances.
Glossary-5

JDK™ software an acronym for Java Development Kit. The JDK software is a Sun
Microsystems, Inc. product that provides the environment required for
software development in the Java programming language. The JDK software is
available for a variety of operating systems, for example Sun Microsystems
Solaris™ OS and Microsoft Windows.

library package a Java programming language package that does not contain any non-abstract
classes that extend the class javacard.framework.Applet. An applet
package contains one or more non-abstract classes that extend the
javacard.framework.Applet class.

local variable a data item known within a block, but inaccessible to code outside the block.
For example, any variable defined within a method is a local variable and
cannot be used outside the method.

logical channel as seen at the card edge, works as a logical link to an application on the card. A
logical channel establishes a communications session between a card applet
and the terminal. Commands issued on a specific logical channel are
forwarded to the active applet on that logical channel. For more information,
see the ISO/IEC 7816 Specification, Part 4. (http://www.iso.org).

MAC an acronym for Message Authentication Code. MAC is an encryption of data
for security purposes.

mask production
(masking) refers to embedding the Java Card virtual machine, runtime environment, and

applets in the read-only memory of a smart card during manufacture.

method a procedure or routine associated with one or more classes in object-oriented
languages.

multiselectable
applets implements the javacard.framework.MultiSelectable interface.

Multiselectable applets can be selected on multiple logical channels at the same
time. They can also accept other applets belonging to the same package being
selected simultaneously.

multiselected applet an applet instance that is selected and, therefore, active on more than one
logical channel simultaneously.

namespace a set of names in which all names are unique.

native method a method that is not implemented in the Java programming language, but in
another language. The CAP file format does not support native methods.

nibble four bits.

object-oriented a programming methodology based on the concept of an object, which is a data
structure encapsulated with a set of routines, called methods, which operate on
the data.
Glossary-6 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

http://www.iso.org

object owner the applet instance within the currently active context when the object is
instantiated. An object can be owned by an applet instance, or by the Java Card
RE.

objects in object-oriented programming, unique instances of a data structure defined
according to the template provided by its class. Each object has its own values
for the variables belonging to its class and can respond to the messages
(methods) defined by its class.

origin logical
channel the logical channel on which an APDU command is issued.

owning context the context in which an object is instantiated or created.

package a namespace within the Java programming language that can have classes and
interfaces.

PCD an acronym for Proximity Coupling Device. The PCD is a contactless card
reader device.

persistent object persistent objects and their values persist from one CAD session to the next,
indefinitely. Objects are persistent by default. Persistent object values are
updated atomically using transactions. The term persistent does not mean
there is an object-oriented database on the card or that objects are serialized
and deserialized, just that the objects are not lost when the card loses power.

PIX see AID.

RAM (random access
memory) temporary working space for storing and modifying data. RAM is non-

persistent memory; that is, the information content is not preserved when
power is removed from the memory cell. RAM can be accessed an unlimited
number of times and none of the restrictions of EEPROM apply.

reference
implementation a fully functional and compatible implementation of a given technology. It

enables developers to build prototypes of applications based on the technology.

remote interface an interface which extends, directly or indirectly, the interface
java.rmi.Remote.

Each method declaration in the remote interface or its super-interfaces includes
the exception java.rmi.RemoteException (or one of its superclasses) in its
throws clause.

In a remote method declaration, if a remote object is declared as a return type,
it is declared as the remote interface, not the implementation class of that
interface.

In addition, Java Card RMI imposes additional constraints on the definition of
remote methods. These constraints are as a result of the Java Card platform
language subset and other feature limitations.
Glossary-7

remote methods the methods of a remote interface.

remote object an object whose remote methods can be invoked remotely from the CAD client.
A remote object is described by one or more remote interfaces.

RFU acronym for Reserved for Future Use.

RID see AID.

RMI an acronym for Remote Method Invocation. RMI is a mechanism for invoking
instance methods on objects located on remote virtual machines (meaning, a
virtual machine other than that of the invoker).

ROM (read-only
memory) memory used for storing the fixed program of the card. A smart card’s ROM

contains operating system routines as well as permanent data and user
applications. No power is needed to hold data in this kind of memory. ROM
cannot be written to after the card is manufactured. Writing a binary image to
the ROM is called masking and occurs during the chip manufacturing process.

runtime
environment see Java Card Runtime Environment (Java Card RE).

shareable interface an interface that defines a set of shared methods. These interface methods can
be invoked from an applet in one context when the object implementing them
is owned by an applet in another context.

shareable interface
object (SIO) an object that implements the shareable interface.

smart card a card that stores and processes information through the electronic circuits
embedded in silicon in the substrate of its body. Unlike magnetic stripe cards,
smart cards carry both processing power and information. They do not require
access to remote databases at the time of a transaction.

terminal a Card Acceptance Device that is typically a computer in its own right and can
integrate a card reader as one of its components. In addition to being a smart
card reader, a terminal can process data exchanged between itself and the
smart card.

thread the basic unit of program execution. A process can have several threads
running concurrently each performing a different job, such as waiting for
events or performing a time consuming job that the program doesn't need to
complete before going on. When a thread has finished its job, it is suspended or
destroyed.

The Java Card virtual machine can support only a single thread of execution.
Java Card technology programs cannot use class Thread or any of the thread-
related keywords in the Java programming language.

transaction an atomic operation in which the developer defines the extent of the operation
by indicating in the program code the beginning and end of the transaction.
Glossary-8 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

transient object the state of transient objects do not persist from one CAD session to the next,
and are reset to a default state at specified intervals. Updates to the values of
transient objects are not atomic and are not affected by transactions.

verification a process performed on a CAP file that ensures that the binary representation of
the package is structurally correct.

word an abstract storage unit. A word is large enough to hold a value of type byte,
short, reference or returnAddress. Two words are large enough to hold a
value of integer type.
Glossary-9

Glossary-10 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

Index
A
aaload, 7-5
aastore, 7-6
abstract, 2-7
AbstractMethodError, 2-21
access control, 2-3

remote interfaces, 2-12
aconst_null, 7-8
AID, 4-3
AID-based naming, 4-3
aload, 7-8
aload_, 7-9
anewarray, 7-10
applet, 1-3

mulitselectable, 2-12
applet component, 6-12
applet firewall, 1-5
application identifier

See AID
areturn, 7-10
ArithmeticException, 2-21
ArrayIndexOutOfBoundsException, 2-21
arraylength, 7-11
arrays, 2-7, 2-10, 5-1, 6-1
ArrayStoreException, 2-21
astore, 7-12
astore_<n>, 7-12
athrow, 7-13
attributes, 2-16, 5-15

ConstantValue, 5-15

B
baload, 7-14
bastore, 7-15
big-endian, 3-4
binary compatibility, 4-11
binary file formats, 3-4
binary representation, 4-1
bipush, 7-16
bitfield structures, 6-1
boolean, 2-7, 3-1
break, 2-7
bspush, 7-16
byte, 2-7, 3-1
bytecode, 2-16

C
CAP, 1-3
CAP file, 4-1
CAP file format, 6-1
case, 2-7
catch, 2-7
char, 2-4
checkcast, 7-17
class, 2-7, 5-8

in a package, 2-9
initialization, 2-11
initialization methods, 3-4
instances, 2-10
object, 2-7
remote, 2-12
throwable, 2-8
 Index-1

unsupported, 2-5
class, 2-7
class component, 6-19, 6-21
class file, 2-13, 4-1
class_debug_info, 6-58
class_descriptor_info, 6-50
class_info, 6-26
ClassCastException, 2-21
ClassCirculatoryError, 2-21
ClassFile, 2-15
ClassFormatError, 2-21
ClassNotFoundException, 2-20
classsystem, 2-5
CloneNotSupportedException, 2-20
cloning, 2-3
compatibility, 4-11
components, 6-2

applet, 6-12
class, 6-19, 6-21
constant pool, 6-14
debug, 6-57
defining, 6-4
descriptor, 6-49
directory, 6-9
export, 6-47
header, 6-6
import, 6-13
installation, 6-5
method, 6-35
reference location, 6-44
static field, 6-41

constant pool, 2-14, 2-15
constant pool component, 6-14
CONSTANT_Classref, 5-6, 6-16
CONSTANT_InstanceFieldref, 6-18
CONSTANT_Integer, 5-7
CONSTANT_Package, 5-5
constant_pool, 5-4
CONSTANT_StaticFieldref, 6-19
CONSTANT_StaticMethodref, 6-19
CONSTANT_SuperMethodref, 6-18
CONSTANT_Utf8 structure, 5-7
CONSTANT_VirtualMethodref, 6-18
ConstantValue attribute, 5-15
context, 3-2

current, 3-3
owning, 3-3

context switch, 3-3
continue, 2-7
converted applet

See CAP
current context, 3-3

D
data type, 3-1

integer, 2-8
debug component, 6-57
default, 2-7
deletion, 2-8
descriptor component, 6-49
directory component, 6-9
do, 2-7
double, 2-4
dup, 7-19
dup_x, 7-20
dup2, 7-21
dynamic class loading, 2-2
dynamic object creation, 2-5

E
else, 2-7
errors, 2-21, 7-2
exception_handler_info, 6-37
ExceptionInInitializerError, 2-21
exceptions, 2-6, 2-19, 3-4, 7-3

checked, 2-20
uncatchable, 2-19
uncaught, 2-19

export component, 6-47
export file, 1-4

conversion, 4-6
export file format, 4-2, 5-1

name, 5-2
ownership, 5-2
structure, 5-3

extends, 2-7
externally visible items, 4-5

F
field_debug_info, 6-61
Index-2 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

field_descriptor_info, 6-52
fields, 2-14, 2-15, 5-11

descriptors, 2-14, 2-15
static, 2-10

file formats
Java Card platform, 4-1

final, 2-7
finalization, 2-2
finally, 2-7
float, 2-4
for, 2-7
frames, 3-3

G
garbage collection, 3-2
getfield_<t>, 7-22
getfield_<t>_this, 7-23
getfield_<t>_w, 7-25
getstatic_<t>, 7-26
goto, 2-7, 7-27
goto_w, 7-28

H
header component, 6-6
heap, 3-2
high bit, 6-1

I
i2b, 7-29
i2s, 7-29
iadd, 7-30
iaload, 7-31
iand, 7-32
iastore, 7-32
icmp, 7-33
iconst_<i>, 7-34
idiv, 7-34
if, 2-7
if<cond>, 7-39
if<cond>_w, 7-40
if_acmp, 7-35
if_acmp<cond>_w, 7-36
if_scmp<cond>, 7-37
if_scmp<cond>_w, 7-38

ifnonnull, 7-41
ifnonnull_w, 7-41
ifnull, 7-42
ifnull_w, 7-43
iinc, 7-43
iinc_w, 7-44
iipush, 7-45
IllegalAccessError, 2-21
IllegalAccessException, 2-20
IllegalArgumentException, 2-21
IllegalMonitorStateException, 2-21
IllegalStateException, 2-21
IllegalThreadStateException, 2-21
iload, 7-46
iload_<n>, 7-46
ilookupswitch, 7-47
implements, 2-7
import, 2-7
import component, 6-13
imul, 7-49
IncompatibleClassChangeError, 2-21
IndexOutOfBoundsException, 2-21
ineg, 7-49
initialization, 3-3

class, 2-11
installation, 4-7, 6-5
instance initialization methods, 3-3
instanceof, 2-7, 7-50
instances, 2-10
InstantiationError, 2-21
InstantiationException, 2-20
instruction set, 3-4, 7-1
instructions

by opcode mnemonic, 8-4
by opcode value, 8-1

int, 2-7, 3-1
integer data type, 2-8
interface, 2-7
interface initialization methods, 3-4
interface_info, 6-26
interfaces, 2-9, 5-8

remote, 2-12
InternalError, 2-22
Index-3

InterruptedException, 2-20
invokeinterface, 7-52
invokespecial, 7-54
invokestatic, 7-55
invokevirtual, 7-56
ior, 7-58
irem, 7-58
ireturn, 7-59
ishl, 7-60
ishr, 7-61
istore, 7-61
istore_<n>, 7-62
isub, 7-63
itableswitch, 7-63
items, 5-1, 6-1
iushr, 7-65
ixor, 7-66

J
JAR files, 4-2, 5-2, 6-3
Java Card applet

See applet
Java Card Converter, 1-4
Java Card file formats, 4-1
Java Card RE context, 3-3
Java Card Remote Method Invocation

See Java Card RMI
Java Card RMI, 2-12

parameters, 2-13
return values, 2-13

Java Card system, 1-2
Java Card Virtual Machine, 1-2, 3-5

limitations, 2-8
Java Card Virtual Machine errors, 7-2
Java Card Virtual Machine instruction set, 7-1
Java programming language, 2-1

unsupported features, 2-2
Java Virtual Machine, 2-1, 2-13
jsr, 7-66

K
keywords, 2-4, 2-7

L
ldc, 2-18
ldc_w, 2-18
library package, 1-4
LinkageError, 2-21
linking, 4-5, 4-7, 4-13
long, 2-4
lookupswitch, 2-18

M
method component, 6-35
method descriptors, 2-15
method_debug_info, 6-62
method_descriptor_info, 6-54
method_info, 6-38
methods, 2-10, 2-14, 2-16, 5-13

static, 2-10
virtual, 2-6, 4-9

mnemonic, 7-4
multiselectable applets, 2-12
must, 7-1

N
naming, 4-3
native, 2-4
NegativeArraySizeException, 2-21
new, 2-7, 7-67
newarray, 7-68
NoClassDefFoundError, 2-22
nop, 7-69
NoSuchFieldError, 2-22
NoSuchFieldException, 2-20
NoSuchMethodError, 2-22
NoSuchMethodException, 2-20
NullPointerException, 2-21
NumberFormatException, 2-21
numeric types, 3-1

O
object, 2-7
objects, 2-7, 2-10

deletion mechanism, 2-8
dynamic creation, 2-5
representation of, 3-3
Index-4 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

opcode mnemonic, 8-4
opcode value, 8-1
opcodes, 3-4

reserved, 7-2
operands, 3-4
OutOfMemoryError, 2-22
owning context, 3-3

P
package, 2-5

applet, 1-4
classes, 2-9
library, 1-4
name, 2-9
references, 2-9
versions, 4-13

package, 2-7
parameters, 2-13
PIX, 4-3
pop, 7-69
pop2, 7-70
primitive types, 3-1
primitive values

values
primitive, 3-1

private, 2-7
proprietary identifier extension

See PIX
protected, 2-7
public, 2-7
putfield_<t>, 7-70
putfield_<t>_this, 7-72
putfield_<t>_w, 7-74
putstatic_<t>, 7-75

R
reference location component, 6-44
reference types, 3-1
reference types, 3-1
reference values, 3-1
references

external, 4-6
internal, 4-6

remote classes, 2-12
remote interfaces, 2-12

access control, 2-12
reserved opcodes, 7-2
resident image, 4-13
resource identifier

See RID
ret, 7-77
return, 2-7, 7-78
return values, 2-13
RID, 4-3
RMI

See Java Card RMI
runtime data areas, 3-2
runtime exceptions

exceptions
runtime, 2-21

S
s2b, 7-78
s2i, 7-79
sadd, 7-79
saload, 7-80
sand, 7-81
sastore, 7-81
sconst_<s>, 7-82
sdiv, 7-83
security, 1-4

exceptions, 7-3
manager, 2-2

SecurityException, 2-21
short, 2-7, 3-1
sinc, 7-83
sinc_w, 7-84
sipush, 7-85
sload, 7-85
sload_<n>, 7-86
slookupswitch, 7-87
smul, 7-88
sneg, 7-88
sor, 7-89
srem, 7-90
sreturn, 7-90
sshl, 7-91
sshr, 7-92
sspush, 7-93
Index-5

sstore, 7-93
sstore_<n>, 7-94
ssub, 7-94
stableswitch, 7-95
StackOverflowError, 2-22
static, 2-7
static field component, 6-41
static field image, 6-41
static fields, 2-10
static methods, 2-10
strictfp, 2-4
StringIndexOutOfBoundsException, 2-21
super, 2-7
sushr, 7-96
swap_x, 7-97
switch, 2-7
switch statements, 2-11
sxor, 7-98
synchronized, 2-4
system, 2-5

T
tables, 5-1, 6-1
tableswitch, 2-19
this, 2-7
ThreadDeath, 2-22
threads, 2-2, 3-2
throw, 2-7
throwable, 2-8
throws, 2-7
token-based linking, 4-5
tokens

assignment, 4-7
class, 4-8
details, 4-7
instance field, 4-9
interface methods, 4-10
package, 4-8
private, 4-5
public, 4-5
static field, 4-8
static method, 4-8
virtual method, 4-10

transient, 2-4

try, 2-7
type_descriptor, 6-23
type_descriptor_info, 6-56
types, 2-7, 3-5

boolean, 3-1
numeric, 3-1
primitive, 3-1
reference, 3-1
reference, 3-1
unsupported, 2-4

U
union notation, 6-1
UnknownError, 2-22
UnsatisfiedLinkError, 2-22

V
values

reference, 3-1
VerifyError, 2-22
virtual methods, 2-6, 4-9
VirtualMachineError, 2-22
void, 2-7
volatile, 2-4

W
while, 2-7
wide, 2-19
words, 3-2
Index-6 Virtual Machine Specification, Java Card Platform, v2.2.2 • March 2006

	Virtual Machine Specification
	Contents
	Figures
	Tables
	Preface
	Who Should Use This Specification
	Before You Read This Specification
	How This Book Is Organized
	Prerequisites
	Related Documents
	Typographic Conventions
	Acknowledgements
	Accessing Sun Documentation Online
	Sun Welcomes Your Comments

	Introduction
	1.1 Motivation
	1.2 The Java Card Virtual Machine
	1.3 Java Language Security
	1.4 Java Card Runtime Environment Security

	A Subset of the Java Virtual Machine
	2.1 Why a Subset is Needed
	2.2 Java Card Platform Language Subset
	2.2.1 Unsupported Items
	2.2.1.1 Unsupported Features
	2.2.1.2 Keywords
	2.2.1.3 Unsupported Types
	2.2.1.4 Classes

	2.2.2 Supported Items
	2.2.2.1 Features
	2.2.2.2 Keywords
	2.2.2.3 Types
	2.2.2.4 Classes

	2.2.3 Optionally Supported Items
	2.2.3.1 Integer Data Type
	2.2.3.2 Object Deletion Mechanism

	2.2.4 Limitations of the Java Card Virtual Machine
	2.2.4.1 Packages
	2.2.4.2 Classes
	2.2.4.3 Objects
	2.2.4.4 Methods
	2.2.4.5 Switch Statements
	2.2.4.6 Class Initialization

	2.2.5 Multiselectable Applets Restrictions
	2.2.6 Java Card Platform Remote Method Invocation (RMI) Restrictions
	2.2.6.1 Remote Classes and Remote Interfaces
	2.2.6.2 Access Control of Remote Interfaces
	2.2.6.3 Parameters and Return Values

	2.3 Java Card VM Subset
	2.3.1 class File Subset
	2.3.1.1 Not Supported in Class Files
	2.3.1.2 Supported in Class Files

	2.3.2 Bytecode Subset
	2.3.2.1 Unsupported Bytecodes
	2.3.2.2 Supported Bytecodes
	2.3.2.3 Static Restrictions on Bytecodes

	2.3.3 Exceptions
	2.3.3.1 Uncaught and Uncatchable Exceptions
	2.3.3.2 Checked Exceptions
	2.3.3.3 Runtime Exceptions
	2.3.3.4 Errors

	Structure of the Java Card Virtual Machine
	3.1 Data Types and Values
	3.2 Words
	3.3 Runtime Data Areas
	3.4 Contexts
	3.5 Frames
	3.6 Representation of Objects
	3.7 Special Initialization Methods
	3.8 Exceptions
	3.9 Binary File Formats
	3.10 Instruction Set Summary
	3.10.1 Types and the Java Card Virtual Machine

	Binary Representation
	4.1 Java Card Platform File Formats
	4.1.1 Export File Format
	4.1.2 CAP File Format
	4.1.3 JAR File Container

	4.2 AID-based Naming
	4.2.1 The AID Format
	4.2.2 AID Usage

	4.3 Token-based Linking
	4.3.1 Externally Visible Items
	4.3.2 Private Tokens
	4.3.3 The Export File and Conversion
	4.3.4 References - External and Internal
	4.3.5 Installation and Linking
	4.3.6 Token Assignment
	4.3.7 Token Details
	4.3.7.1 Package
	4.3.7.2 Classes and Interfaces
	4.3.7.3 Static Fields
	4.3.7.4 Static Methods and Constructors
	4.3.7.5 Instance Fields
	4.3.7.6 Virtual Methods
	4.3.7.7 Interface Methods

	4.4 Binary Compatibility
	4.5 Package Versions
	4.5.1 Assigning
	4.5.2 Linking

	The Export File Format
	5.1 Export File Name
	5.2 Containment in a JAR File
	5.3 Ownership
	5.4 Hierarchies Represented
	5.5 Export File
	5.6 Constant Pool
	5.6.1 CONSTANT_Package
	5.6.2 CONSTANT_Classref
	5.6.3 CONSTANT_Integer
	5.6.4 CONSTANT_Utf8

	5.7 Classes and Interfaces
	5.8 Fields
	5.9 Methods
	5.10 Attributes
	5.10.1 ConstantValue Attribute

	The CAP File Format
	6.1 Component Model
	6.1.1 Containment in a JAR File
	6.1.2 Defining New Components

	6.2 Installation
	6.3 Header Component
	6.4 Directory Component
	6.5 Applet Component
	6.6 Import Component
	6.7 Constant Pool Component
	6.7.1 CONSTANT_Classref
	6.7.2 CONSTANT_InstanceFieldref, CONSTANT_VirtualMethodref, and CONSTANT_SuperMethodref
	6.7.3 CONSTANT_StaticFieldref and CONSTANT_StaticMethodref

	6.8 Class Component
	6.8.1 type_descriptor
	6.8.2 interface_info and class_info
	6.8.2.1 interface_info and class_info shared Items
	6.8.2.2 interface_info Items
	6.8.2.3 class_info Items
	6.8.2.4 implemented_interface_info
	6.8.2.5 remote_interface_info

	6.9 Method Component
	6.9.1 exception_handler_info
	6.9.2 method_info

	6.10 Static Field Component
	6.11 Reference Location Component
	6.12 Export Component
	6.13 Descriptor Component
	6.13.1 class_descriptor_info
	6.13.2 field_descriptor_info
	6.13.3 method_descriptor_info
	6.13.4 type_descriptor_info

	6.14 Debug Component
	6.14.1 The class_debug_info Structure
	6.14.1.1 The field_debug_info Structure
	6.14.1.2 The method_debug_info Structure

	Java Card Virtual Machine Instruction Set
	7.1 Assumptions: The Meaning of “Must”
	7.2 Reserved Opcodes
	7.3 Virtual Machine Errors
	7.4 Security Exceptions
	7.5 The Java Card Virtual Machine Instruction Set
	7.5.1 aaload
	7.5.2 aastore
	7.5.3 aconst_null
	7.5.4 aload
	7.5.5 aload_<n>
	7.5.6 anewarray
	7.5.7 areturn
	7.5.8 arraylength
	7.5.9 astore
	7.5.10 astore_<n>
	7.5.11 athrow
	7.5.12 baload
	7.5.13 bastore
	7.5.14 bipush
	7.5.15 bspush
	7.5.16 checkcast
	7.5.17 dup
	7.5.18 dup_x
	7.5.19 dup2
	7.5.20 getfield_<t>
	7.5.21 getfield_<t>_this
	7.5.22 getfield_<t>_w
	7.5.23 getstatic_<t>
	7.5.24 goto
	7.5.25 goto_w
	7.5.26 i2b
	7.5.27 i2s
	7.5.28 iadd
	7.5.29 iaload
	7.5.30 iand
	7.5.31 iastore
	7.5.32 icmp
	7.5.33 iconst_<i>
	7.5.34 idiv
	7.5.35 if_acmp<cond>
	7.5.36 if_acmp<cond>_w
	7.5.37 if_scmp<cond>
	7.5.38 if_scmp<cond>_w
	7.5.39 if<cond>
	7.5.40 if<cond>_w
	7.5.41 ifnonnull
	7.5.42 ifnonnull_w
	7.5.43 ifnull
	7.5.44 ifnull_w
	7.5.45 iinc
	7.5.46 iinc_w
	7.5.47 iipush
	7.5.48 iload
	7.5.49 iload_<n>
	7.5.50 ilookupswitch
	7.5.51 imul
	7.5.52 ineg
	7.5.53 instanceof
	7.5.54 invokeinterface
	7.5.55 invokespecial
	7.5.56 invokestatic
	7.5.57 invokevirtual
	7.5.58 ior
	7.5.59 irem
	7.5.60 ireturn
	7.5.61 ishl
	7.5.62 ishr
	7.5.63 istore
	7.5.64 istore_<n>
	7.5.65 isub
	7.5.66 itableswitch
	7.5.67 iushr
	7.5.68 ixor
	7.5.69 jsr
	7.5.70 new
	7.5.71 newarray
	7.5.72 nop
	7.5.73 pop
	7.5.74 pop2
	7.5.75 putfield_<t>
	7.5.76 putfield_<t>_this
	7.5.77 putfield_<t>_w
	7.5.78 putstatic_<t>
	7.5.79 ret
	7.5.80 return
	7.5.81 s2b
	7.5.82 s2i
	7.5.83 sadd
	7.5.84 saload
	7.5.85 sand
	7.5.86 sastore
	7.5.87 sconst_<s>
	7.5.88 sdiv
	7.5.89 sinc
	7.5.90 sinc_w
	7.5.91 sipush
	7.5.92 sload
	7.5.93 sload_<n>
	7.5.94 slookupswitch
	7.5.95 smul
	7.5.96 sneg
	7.5.97 sor
	7.5.98 srem
	7.5.99 sreturn
	7.5.100 sshl
	7.5.101 sshr
	7.5.102 sspush
	7.5.103 sstore
	7.5.104 sstore_<n>
	7.5.105 ssub
	7.5.106 stableswitch
	7.5.107 sushr
	7.5.108 swap_x
	7.5.109 sxor

	Tables of Instructions
	Glossary
	Index

