D Sun

microsystems

Application Programming Notes

Java Card™ Platform, Version 2.2.2

Sun Microsystems, Inc.
WWW.sun.com

3-11-06

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
Earticular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
ttp:/ /www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sparc, Java Card, Java Developer Connection, Javadoc, JDK, JVM, J2ME, NetBeans and J2SE
are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "ASIS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés a
l'adresse http:/ /www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.L'utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront étre dérivées des systémes Berkeley BSD licenciés par I'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sparc, Java Card, Java Developer Connection, Javadoc, JDK, JVM, J2ME, NetBeans et J2SE
sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Les produits qui font I'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d'un orgre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

Contents

Preface vii

Using Object, Package and Applet Deletion 1
Object Deletion Mechanism 1

Requesting the Object Deletion Mechanism 2

Object Deletion Mechanism Usage Guidelines 2
Package and Applet Deletion 3

Developing Removable Packages 3

Writing Removable Applets 4

Using the AppletEvent.uninstall Method 4

Working with Logical Channels 7

Applets and Logical Channels 8
Non-MultiSelectable Applets 8
Interoperability 8

Understanding the MultiSelectable Interface 9
Selection for MultiSelectable Applets 9
Deselection for MultiSelectable Applets 10

Writing Applets For Concurrent Logical Channels 10
MultiSelectable Applet Example 11

Handling Channel Information on APDU Commands 13
Writing ISO 7816-4:2005 Compliant Applets 16

ISO 7816-4:2005 Compliant Applet Example 17
Applet Firewall Operation Requirements 18

Working with Non-MultiSelectable Applets 19

ISO 7816-4:2005 Specific APDU Commands for Logical Channel
Management 19

MANAGE CHANNEL OPEN 20
MANAGE CHANNEL CLOSE 21

SELECT FILE 22

3. Working with APDUI/O 23

The APDUI/O API 23
APDU I/0 Classes and Interfaces 23
Exceptions 25

Two-interface Card Simulation 25

Examples of Use 26
To Connect To a Simulator 26
To Establish a T=0 Connection To a Card 26
To Establish a Connection To a PC/SC-Compatible Card Reader
To Power Up And Power Down the Card 27
To Exchange APDUs 28
To Print the APDU 28

4. Developing RMI Applications for the Java Card Platform 29
Developing an RMI Applet for the Java Card Platform 29
Generating Stubs 29
Running a Java Card RMI Applet 30
Running the Java Card RMI Client Program 31
Basic Example 31

Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

27

Main Program 31

Building an Applet 35

Writing a Client 37

Card Terminal Interaction 41
Adding Security 42

Implementing a Security Service 44

Building an Applet 46

Writing a Client 48

Using Extended APDU 53

Extended APDU Nominal Cases 53

Extended APDU Format 54

Extended APDU Limits 55
javacardx. framework.ExtendedLength Interface 55
Extensions To javacard. framework.APDU Class 56

Sending and Receiving Extended APDU Commands 56

Index 59

Contents v

vi Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

Preface

This book contains tips and guidelines for applet developers and for developers of
vendor-specific frameworks.

Java Card™ technology combines a subset of the Java™ programming language
with a runtime environment optimized for smart cards and similar small-memory
embedded devices. The goal of Java Card technology is to bring many of the benefits
of the Java programming language to the resource-constrained world of smart cards.

The Java Card API is compatible with international standards such as ISO7816 and
industry-specific standards such as Europay, Master Card, Visa (EMV).

Who Should Use This Book

This book is for applet developers using the Application Programming Interface for the
Java Card Platform, Version 2.2.2 to implement applet management, multiselectable
applets, logical channels, APDU 1/0, Remote Method Invocation (RMI), and
extended APDUs for the Java Card platform.

This book is also for developers who are considering creating a vendor-specific
framework based on version 2.2.2 of the Java Card technology specifications.

vii

Before You Read This Book

Before reading this guide, become familiar with the Java programming language,
object-oriented design, the Java Card technology specifications, and smart card
technology. A good resource for becoming familiar with Java and Java Card
technology is the Sun Microsystems, Inc. web site, located at

http://java.sun.com

You must also be familiar with the development tools released with version 2.2.2 of
the Java Card platform. For information on these tools, see the Development Kit User’s
Guide, Java Card Platform, Version 2.2.2.

How This Book Is Organized

Chapter 1 describes how to perform object deletion, applet deletion, and package
deletion on the Java Card platform.

Chapter 2 describes how to create and use applets that can be selected for use on
multiple channels on the Java Card platform.

Chapter 3 describes how to use APDU 1/0 to create and use applets.

Chapter 4 describes how to develop applications that use RMI on the Java Card
platform.

Chapter 5 describes how to handle extended APDU functionality on the Java Card
platform.

Related Books

References to various documents or products are made in this manual. Have the
following documents available:

m Development Kit User’s Guide for the Java Card Platform, Version 2.2.2.
m Application Programming Interface for the Java Card Platform, Version 2.2.2.
m Virtual Machine Specification for the Java Card Platform, Version 2.2.2.

viii Application Programming Notes, Java Card Platform, Version 2.2.2 * March 2006

http://java.sun.com

m Runtime Environment Specification for the Java Card Platform, Version 2.2.2.
m Java Card Technology for Smart Cards by Zhiqun Chen (Addison-Wesley, 2000).

m Off-Card Verifier for the Java Card Platform, Version 2.2.1, White Paper (Sun
Microsystems, Inc., 2003) , Sun Microsystems, Inc.

m The Java Programming Language (Java Series), Second Edition by Ken Arnold and

James Gosling (Addison-Wesley, 1998).

m The Java Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm
and Frank Yellin (Addison-Wesley, 1999).

m The Java Class Libraries: An Annotated Reference, Second Edition (Java Series) by
Patrick Chan, Rosanna Lee and Doug Kramer (Addison-Wesley, 1999).

m [SO 7816 Specification Parts 1-6.

Version 2.2.2 of the Development Kit User’s Guide and the Java Card specifications are

included in this development kit for the binary release. You can also download the
identical specifications bundle separately from the Sun Microsystems” web site at

http://java.sun.com/products/javacard

Typographic Conventions

The following table lists the typographic conventions used in this book.

TABLE P-1 Typographic Convertions For This Book
Typeface Meaning Examples
AaBbCcl123 The names of commands, files, Edit your .login file.
and directories; on-screen Use 1s -a to list all files.
computer output % You have mail.
AaBbCcl23 What you type, when % su
contrasted with on-screen Password:
computer output 1. Run cref in a new window.
AaBbCc123 Book titles, new words or terms, = Read Chapter 6 in the User’s Guide.

words to be emphasized

Command-line variable; replace
with a real name or value

These are called class options.
You must be superuser to do this.

To delete a file, type rm filename.

Preface

http://java.sun.com/products/javacard

Accessing Sun Documentation Online

Access Java platform technical documentation on the web at the Java Developer
Connection™ program web site at:

http://java.sun.com/reference/

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments
and suggestions. Email your comments to us at docs@java.sun.com

x Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

http://java.sun.com/reference/

CHAPTER 1

Using Object, Package and Applet
Deletion

This chapter describes how to use the object deletion mechanism and the package
and applet deletion features of the Java Card platform.

Object Deletion Mechanism

The object deletion mechanism on the Java Card platform reclaims memory that is
being used by “unreachable” objects. For an object to be unreachable, neither a static
nor an object field can point to an object. An applet object is reachable until
successfully deleted.

The object deletion mechanism on the Java Card platform is not like garbage
collection in standard Java technology applications due to space and time
constraints. The amount of available RAM on the card is limited. In addition,
because object deletion mechanism is applied to objects stored in persistent memory,
it must be used sparingly. EEPROM writes are very time-consuming operations and
only a limited number of writes can be performed on a card. Due to these
limitations, the object deletion mechanism in Java Card technology is not automatic.
It is performed only when an applet requests it. Use the object deletion mechanism
sparingly and only when other Java Card technology-based facilities are
cumbersome or inadequate.

The object deletion mechanism on the Java Card platform is not meant to change the
programming style in which programs for the Java Card platform are written.

Requesting the Object Deletion Mechanism

Only the runtime environment for the Java Card platform (Java Card Runtime
Environment or Java Card RE) can start the object deletion mechanism, although any
applet on the card can request it. The applet requests the object deletion mechanism
with a call to the JCSystem.requestObjectDeletion () method.

For example, the following method updates the buffer capacity to the given value. If
it is not empty, the method creates a new buffer and removes the old one by
requesting the object deletion mechanism.

/ * *

* The following method updates the buffer size by removing

* the old buffer object from the memory by requesting

* object deletion and creates a new one with the

* required size.

*/
void updateBuffer (byte requiredSize) {
try{
if (buffer !'= null && buffer.length == requiredSize) {
//we already have a buffer of required size
return;

}
JCSystem.beginTransaction() ;
bytel[] oldBuffer = buffer;
buffer = new bytel[requiredSize]l;
if (oldBuffer != null)
JCSystem.requestObjectDeletion() ;
JCSystem.commitTransaction () ;
}catch (Exception e) {
JCSystem.abortTransaction() ;

}

Object Deletion Mechanism Usage Guidelines

Do not confuse the object deletion mechanism on the Java Card platform with
garbage collection in the standard Java programming language. The following
guidelines describe the possible scenarios when the object deletion mechanism
might or might not be used:

m When throwing exceptions, avoid creating new exception objects and relying on
the object deletion mechanism to perform cleanup. Try to use existing exception
objects.

m Similarly, try not to create objects in method or block scope. This is acceptable in
standard Java technology applications, but is an incorrect use of the object
deletion mechanism in Java Card technology-based applications.

2 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

m Use the object deletion mechanism when a large object, such as a certificate or
key, must be replaced with a new one. In this case, instead of updating the old
object in a transaction, create a new object and update its pointer within the
transaction. Then, use the object deletion mechanism to remove the old object.

m Use the object deletion mechanism when object resizing is required, as shown in
the example in “Requesting the Object Deletion Mechanism” on page 2.

Package and Applet Deletion

Version 2.2.2 of the Java Card platform provides the ability to delete package and
applet instances from the card’s memory. Requests for deletion are sent in the form
of an APDU from the terminal to the smart card. Requests to delete an applet or
package cannot be sent from an applet on the card.

In version 2.2.2 of the Java Card platform, the installer deletes packages and applets.
Once the installer is selected, it can receive requests from the terminal to delete
packages and applets. The following sections describe programming guidelines that
will help your packages and applets to be more easily removed.

Developing Removable Packages

Package deletion refers to removing all of a package’s code from the card’s memory.
To be eligible for deletion, nothing on the card can have dependencies on the
package to be deleted, including the following;:

m Packages that are dependent on the package to be deleted

m Applet instances or objects that either belong to the package, or that belong to a
package that depends on the package to be deleted

Package deletion will not succeed if any of the following conditions exist:

m A reachable instance of a class belonging to the package exists on the card.

m Another package on the card depends on the package.

m A reset or power failure occurs after the deletion process begins, but before it

completes.

To ensure that a package can be removed from the card easily, avoid writing and
downloading other packages that might be dependent on the package. If there are
other packages on the card that depend on this package, then you must remove all
of the dependent packages before you can remove this package from the card
memory.

Chapter 1 Using Object, Package and Applet Deletion 3

Writing Removable Applets

Deleting an applet means that the applet and all of its child objects are deleted.
Applet deletion fails if any of the following conditions exist:

m Any object owned by the applet instance is referenced by an object owned by
another applet instance on the card.

m Any object owned by the applet instance is referenced from a static field in any
package on the card.

m The applet is active on the card.
If you are writing an applet that is deemed to be short lived and is to be removed

from the card after performing some operations, follow these guidelines to ensure
that the applet can be removed easily:

m Write cooperating applets if shareable objects are required. To reduce coupling
between applets, try to obtain shareable objects on a per-use basis.

m If interdependent applets are required, make sure that these applets can be
deleted simultaneously.

m Follow one of these guidelines when static reference type fields exist:

» Ensure there is a mechanism available in the applet to disassociate itself from
these fields before applet deletion is attempted.

= Ensure that the applet instance and code can be removed from the card
simultaneously (that is, by using applet and package deletion).

Using the AppletEvent.uninstall Method

When an applet needs to perform some important actions prior to deletion, it might
implement the uninstall method of the AppletEvent interface. An applet might
find it useful to implement this method for the following types of functions:

m Release resources such as shared keys and static objects
m Backup data into another applet's space
m Notify other dependent applets

Calling uninstall does not guarantee that the applet will be deleted. The applet
might not be deleted after the completion of the uninstall method in some of
these cases:

m Other applets or packages are still dependent on this applet.

m Another applet that needs to be deleted simultaneously cannot currently be
deleted.

m The package that needs to be deleted simultaneously cannot currently be deleted.

m A tear occurs before the deletion elements are processed.

4 Application Programming Notes, Java Card Platform, Version 2.2.2 « March 2006

To ensure that the applets are deleted, implement the uninstall method
defensively. Write your applet with these guidelines in mind:

m The applet continues to function consistently and securely if deletion fails.
m The applet can withstand a possible tear during the execution.
m The uninstall method can be called again if deletion is reattempted.

The following example shows such an implementation:

public class TestAppl extends Applet implements AppletEvent{

// field set to true after uninstall
private boolean disableApp = false;

public void uninstall() {
if (!disabledpp) {
JCSystem.beginTransaction(); //to protect against tear
disableApp = true; //mark as uninstalled
TestApp2SI0.removeDependency () ;
JCSystem. commitTransaction () ;

public boolean select (boolean appInstAlreadyActive) {
// refuse selection if in uninstalled state
if (disableApp) return false;
return true;

Chapter 1 Using Object, Package and Applet Deletion 5

6 Application Programming Notes, Java Card Platform, Version 2.2.2 « March 2006

CHAPTER 2

Working with Logical Channels

Version 2.2.2 of the Java Card platform has the ability to support up to twenty
logical channels per active interface. This gives an ISO-7816-4:2005-compliant
terminal the ability to open as many as twenty sessions into the smart card, one
session per logical channel. Logical channels allow the concurrent execution of
multiple applications on the card, allowing a terminal to handle different tasks at the
same time.

Applets written for version 2.1 of the Java Card platform still work correctly, but
they are unaware of logical channel support. In contrast, applets written for version
2.2.2 can take advantage of this feature.

For example, you can write an applet for version 2.2.2 of the Java Card platform that
is capable of handling security on one channel, while another applet attempts to
access user personal information on another channel, using security information on
the first. By following this design, it is possible to access information owned by a
different applet without having to deselect the currently selected applet that is
handling session information. Thus, you avoid losing your session-specific security
data, which is usually stored in CLEAR_ON_DESELECT RAM memory.

On dual interface cards, each interface itself can handle up to twenty independent
logical channels. Each interface has its separate pool of logical channels: channels
sharing the same number on two distinct interfaces will be treated as two
independent, separate logical channels. Therefore, a dual concurrent interface card
could, in theory, support up to forty concurrent logical channels, twenty per each
interface. Channel management commands can only affect the operation logical
channels in the interface where these commands were issued.

For more information on logical channels, their implementation and logical channel
terminology, see the Runtime Environment Specification for the Java Card Platform,
Version 2.2.2.

Applets and Logical Channels

In version 2.2.2 of the Java Card platform, you can work with applets that are aware
of multiple channels and applets that are not aware of multiple channels.

The logical channel implementation in version 2.2.2 of the Java Card platform
preserves backward compatibility with applets written for the Java Card platform
version 2.1. It also allows you the option of writing your applets to use the logical
channel feature or of writing the applets to work independently on any channel
without using the logical channels at all.

Non-MultiSelectable Applets

In version 2.2.2 of the Java Card platform, you have the option of writing applets
that can operate in a multiple channel environment, or you can write applets that do
not take advantage of this feature. Applets written for the Java Card platform that
do not take advantage of the multiple channel environment are similar to applets
written for the version 2.1 Java Card specification. An applet written for the Java
Card platform that is not designed to be aware of multiple channels cannot be
selected more than once nor can any other applet inside the package be selected
concurrently on a different channel.

You can have several non-multiselectable applets operating simultaneously on
different channels, as long as they do not interfere with each other’s data while they
are active. For example, you can open up to 4 channels and run a distinct applet on
each as long as they do not inter-operate. You can control their operation by
multiplexing commands into the APDU communications channel. If the applets are
independent of each other, then the results will be the same as if each of these
applets were running one at a time, each in a separate session.

Interoperability

If you design your applets to take advantage of multi-session functionality, they can
inter-operate from different channels and can be selected multiple times in different
channels. For example, the card might handle security information on one channel,
while data is accessed on a second channel, while the third channel takes care of
data encoding operations.

8 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

Understanding the MultiSelectable
Interface

For an applet to be selectable on multiple channels at the same time, or to have
another applet belonging to the same package selected simultaneously, it must
implement the javacard. framework.MultiSelectable interface. Implementing
this interface allows the applet to be informed when it has been selected more than
once or when applets in the same package are already selected during applet
activation.

If an applet that does not implement MultiSelectable is selected more than once
on different channels, or selected concurrently with applets in the same package, an
error is returned to the terminal.

Note — If an applet in any package implements the MultiSelectable interface,
then all applets in the package must also implement the MultiSelectable
interface. It is not possible to have multiselectable and non-multiselectable applets in
the same package.

The MultiSelectable interface contains a select and a deselect method to
manage multiselectable applets.

Selection for MultiSelectable Applets

The MultiSelectable interface defines one method to be invoked instead of
Applet.select () when the applet being selected, or any other applet in its
package, is already selected on another logical channel.

public boolean MultiSelectable.select (boolean
appInstAlreadySelected)

The MultiSelectable.select (boolean) method informs the applet instance if
it is selected more than once on different channels, or if another applet in the same
package is selected on another channel on any interface. The parameter
appInstAlreadySelected is true if the applet is selected on a different channel.
It is false if it is not selected. The method can return either true or false to
accept or reject applet selection.

This method can be called as a result of issuing a SELECT FILE or MANAGE
CHANNEL OPEN APDU command to select an applet. If the applet is not selected,
then the appInstAlreadySelected parameter is passed as false to signal an
applet activation event. If the applet is subsequently selected on another channel,

Chapter 2 Working with Logical Channels 9

MultiSelectable.select (boolean) is called again, but this time, the
appInstAlreadySelected parameter is passed as true, to indicate that the applet
is already active.

Deselection for MultiSelectable Applets

The MultiSelectable interface defines one method to be invoked instead of
Applet.select () when the applet being deselected, or any other applet in its
package, is already selected on another logical channel.

public void MultiSelectable.deselect (boolean appInstStillSelected)

The MultiSelectable.deselect (boolean) method informs the applet instance
if it is being deselected on the logical channel while the same applet instance or
another applet in the same package is still active on another channel on any
interface. The parameter appInstStillSelected is true if the applet remains
active on a different channel. It is false if it is not active on another channel. A
value of false indicates that this is the last remaining active instance of the applet.

This method can be called as the result of a MANAGE CHANNEL CLOSE or SELECT
FILE APDU command. If the applet still remains active on a different channel, the
appInstStillSelected parameter is passed as true. Note that if the
MultiSelectable.deselect (boolean) method is called, it means that either an
instance of this applet or another applet from the same package remains active on
another channel, so CLEAR_ON_DESELECT transients are not cleared. Only when the
last applet instance from the entire package is deselected does a call to
Applet.deselect () result, resulting in the erasure of CLEAR_ON_DESELECT
transients.

Writing Applets For Concurrent Logical
Channels

This section describes how to write a multiselectable applet that will perform
various tasks based on whether it is selected. The code samples in this section show
how to extend the applet to implement the MultiSelectable interface and how to
implement the MultiSelectable.select (boolean) and deselect (boolean)
methods. The code samples also show how to use the Applet.select () and
deselect () methods to work with multiselectable applets.

To take advantage of multiple channel operation, an applet must implement the
javacard. framework.MultiSelectable interface. For example:

10 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

public class SampleApplet extends Applet
implements MultiSelectable {
}

The new applet needs to provide implementation for the
MultiSelectable.select (boolean) and

MultiSelectable.deselect (boolean) methods. These methods are responsible
for encoding the behavior that the applet needs during a selection event if either of
the following situations occurs:

m The applet is already selected on a different channel.

m One or more applets from the same package are also selected on different
channels.

The behavior to be encoded might include initializing applet state, accepting or

rejecting the selection request, or clearing data structures in case of deselection.

public boolean select (boolean appInstAlreadySelected) {

// Implement the logic to control applet selection
// during a multiselection situation

public void deselect (boolean appInstStillSelected) ({

// Implement the logic to control applet deselection
// during a multiselection situation
}

Note that the applet is still required to implement the Applet.select () and
Applet.deselect () methods in addition to the MultiSelectable interface.
These methods handle applet selection and deselection behavior when a
multiselection situation does not happen.

MultiSelectable Applet Example

In this example, assume that the multiselectable applet, SampleApplet, must
initialize the following two arrays of data when it is selected:

m An array of package data to be initialized when the first applet in the package
becomes active

m An array of private applet data to be initialized upon applet instance activation

You can make these distinctions in your code because the MultiSelectable
interface allows the applet to recognize the circumstances under which it is selected.

Chapter 2 Working with Logical Channels 11

Also, assume that the applet has the following requirements:

m Clear the package data once no applet in the package is active

m Clear the applet private data when the applet instance is deselected

Assume that the following methods are responsible for clearing and setting the data:

// dataType parameter as above
final static byte DATA PRIVATE = (byte)01;
final static byte DATA_PACKAGE = (byte)02;

public void initData(byte[] dataArray, byte dataType) {

}

public void clearData(byte[] dataArray) ({

}

To achieve the behavior specified above, you must modify the selection and
deselection methods in your sample applet.

The code for Applet.select (), which is invoked when this applet is the first to
become active in the package, can be implemented like this:

public boolean select() ({

// First applet to be selected in package, so
// initialize package data and applet data
initData (packageData, DATA_PACKAGE) ;

initData (privateData, DATA_PRIVATE) ;

return true;

}

Likewise, the implementation of the method

MultiSelectable.select (boolean) must determine whether the applet is
already active. According to its definition, this method is called when another applet
within this package is active. MultiSelectable.select (boolean) can be
implemented such that if appInstAlreadySelected is false, then the applet
private data can be initialized. For example:

12 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

public boolean select (boolean appInstAlreadySelected) {

// If boolean parameter is false,

// then we have applet activation

// Otherwise, no applet activation occurs.

if (appInstAlreadySelected == false) {
// Initialize applet private data, upon activation
initData (privateData, DATA PRIVATE) ;

}

return true;

}

In the case of deselection, the applet data must be cleared. The method
MultiSelectable.deselect (boolean) can be implemented so that it clears
applet data only if the applet is no longer active. For example:

public void deselect (boolean appInstStillSelected) ({

// If boolean parameter is false, then applet is no longer
// active. It is 0.K. to clear applet private data.
if (appInstStillSelected == false) {

clearData (privateData) ;

}

If this applet is the last one to be deactivated from the package, it also must clear
package data. This situation results in a call to Applet.deselect (). This method
can be implemented like this:

public void deselect() {
// This call means that the applet is no longer active and
// that no other applet in the package is. Data for both
// applet and package must be cleared.
clearData (packageData) ;
clearData (privateData) ;

Handling Channel Information on APDU Commands

APDU commands follow the ISO 7816-4:2005 specifications to encode logical
channel information. The CLA byte encodes logical channel information. The CLA
byte encoding is divided into two spaces: interindustry, used by all ISO 7816-4:2005-
defined commands, and the proprietary space, used by Java Card technology to
encode application- specific commands.

The CLA byte encoding is divided into two classes: Type 4 commands, which
encode legacy ISO 7816-4 logical channel information; and Type 16 commands,
which are defined by the ISO 7816-4:2005 specification to encode information for
additional 16 logical channels in the card. Type 4 logical channels occupy the range

Chapter 2 Working with Logical Channels 13

of [0..3], while Type 16 logical channels go in the range of [4..19], that is, the value
encoded in the CLA byte plus four, as it is used in SELECT, MANAGE CHANNEL
and other proprietary or ISO commands.

However, a note of caution: while MANAGE CHANNEL command CLA byte
follows the encoding as described below, its P2 parameter does not. The logical
channel numbers in its P2 parameter are correctly encoded in the range of [0..19].

The CLA byte encoding follows the following rules.

Interindustry Space

CLA Remarks

0x0X Type 4, last or only command in chain

0x1X Type 4, not last command in chain (paired with 0x0X)

0x2X RFU (will throw exception)

0x3X RFU (will throw exception)

0x4X Type 16, no SM, last or only command in chain

0x5X Type 16, no SM, not last command in chain (paired with 0x4X)
0x6X Type 16, SM, last or only command in chain

0x7X Type 16, SM, not last command in chain (paired with 0x07X)
The encoding details are as follows.

Type 4:
b8 b7 b6 b5 bd b3 b2 bl
0 0 0 x v v z =z

Type 16:
b8 b7 b6 b5 b4 b3 b2 bl

0 1 v x z z z z
Notation:

x = Command Chaining bit
0 = last or only command

1 = command chaining

y = Secure Messaging indicator, see ISO7816-4:2003 section 6 for further information.

14 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

z = Logical channel indicator
Type 4 supports logical channels [0..3]

Type 16 supports logical channels [0..15], which are mapped to logical channels
[4..19]

Proprietary Java Card Technology Space

CLA Remarks

0x8X Type 4, last or only command in chain

0x9X Type 4, not last command in chain (paired with 0x8X)

OxAX Type 4, last or only command in chain

0xBX Type 4, not last command in chain (paired with 0xAX)

0xCX Type 16, no SM, last or only command in chain

0xDX Type 16, no SM, not last command in chain (paired with 0xCX)
0OxEX Type 16, SM, last or only command in chain

0xFX Type 16, SM, not last command in chain (paired with 0xEX)

The encoding details are as follows.

Type 4:

b8 b7 b6 b5 b4 b3 b2 bl
1 0 N/A x b hY% z z
Type 16:

b8 b7 b6 b5 b4 b3 b2 bl

1 1 v b4 z z Z Z

All applets willing to use the logical channel capabilities must comply with the ISO
7816-4:2005 CLA byte encoding specification, and choose APDU commands as
defined in the proprietary space.

The X nibble is responsible for logical channels and secure message encoding. Only
the two least significant bits of the nibble are used for channel encoding, which
ranges from 0 to 3. When an APDU command is received, the card processes it and
determines whether the command has logical channel information encoding. If
logical channel information is encoded, then the card sends the APDU command to
the respective channel. All other APDU commands are forwarded to the card’s basic

Chapter 2 Working with Logical Channels 15

channel (0). For example, the command 0xB1 forwards the command to the card’s
basic channel (0), because the CLA byte with the nibble 0xBX does not contain
logical channel information.

This also means that all applets willing to use the logical channel capabilities must
comply with the ISO 7816-4 CLA byte encoding specification, and choose APDU
commands accordingly.

Just as the deselection and selection mechanisms must be written to take into
consideration a multiple-channel environment, it is important to write the
Applet.process () method so that it handles channel information correctly. Due
to the fact that some APDUs can be digitally signed, the APDU command is passed to
the applet’s process method as it is sent by the terminal. That means any logical
channel information is not cleared and is passed intact to the applet. The applet
must deal with this situation.

To assist applet developers in correctly identifying proprietary and interindustry
commands, the following API call can be used. This call returns true if the CLA
byte encoding corresponds to the interindustry space, or false if it corresponds to
the proprietary space.

// Applet’s process method
public void process (APDU apdu) {

byte[] buffer = apdu.getBuffer();

// check SELECT APDU command
if (apdu.isISOInterindustryCLA()) {
if (Applet.selectingApplet()) {
return;
} else {
ISOException.throwIt (IS07816.SW_CLA_NOT_ SUPPORTED) ;
}

Writing ISO 7816-4:2005 Compliant Applets

If your applets must be compliant with the ISO 7816-4:2005 specification, then you
must track the applet security state on each channel where it is active. Additionally,
in the case of multiselectable applets, you must copy the state (including its security
configuration) when you perform MANAGE CHANNEL commands from a channel other
than the basic channel.

16 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

For example, applets might need to perform some sort of initialization upon
activation, as well as cleanup procedures during deactivation. To do these tasks, a
multiselectable applet might need to keep track of the channels on which it is being
selected during a card session.

To track this information, you need to know the channel on which the task is being
performed. Tracking is done by two methods in the Java Card API:

m APDU class: public static byte getCLAChannel () ;

This method returns the origin channel where the command was issued. In case
of MANAGE CHANNEL or SELECT FILE commands, if this method is called within
the Applet.select (), MultiSelectable.select (boolean),
Applet.deselect (), or MultiSelectable.deselect (boolean) method, it
returns the APDU command logical channel as specified in the CLA byte.

m JCSystem class: public static byte getAssignedChannel () ;

This method returns the channel of the currently selected applet. In case of a
MANAGE CHANNEL command, if this method is invoked inside the
Applet.select (), MultiSelectable.select (boolean),
Applet.deselect (), or MultiSelectable.deselect (boolean) method, it
returns the channel where the applet to be selected or deselected is assigned to
run.

ISO 7816-4:2005 Compliant Applet Example

In case of a MANAGE CHANNEL command from a non-zero channel to another non-
zero channel, the ISO 7816-4 specification requires that the security state from the
applet selected in the origin channel be copied into the new channel. In the example
presented in this section, assume that the state information is stored in the array
appState inside the applet:

StateObj appState[MAX_ CHANNELS] ; // Holds the security state

// for each logical channel
You can use the APDU. getCLAChannel () and
JCSystem.getAssignedChannel () methods to identify if the applet selection
case corresponds to an ISO 7816-4 case where the security state needs to be copied.

Note that if such an event occurs, it will also be a multiselection situation, where the
applet is also selected on the newly opened channel.

In this example, the code to identify the applet selection case is included in the
implementation of the MultiSelectable.select (boolean) method:

Chapter 2 Working with Logical Channels 17

public boolean select (boolean appInstAlreadySelected) {

// Obtain logical channels information
// This call returns the channel where
// the command was issued

byte origChannel = APDU.getCLAChannel () ;

// This call returns the channel where the applet is being
// selected
byte targetChannel = JCSystem.getAssignedChannel () ;

if (origChannel == targetChannel) {
// This is a SELECT FILE command.
// Do processing here.

if (origChannel == 0) {
// This is a MANAGE CHANNEL command from channel 0.
// ISO 7816-4 state sharing case does not
// apply here.
// Do processing here.

} else {
// Since origChannel != 0, the special
// ISO 7816-4 case applies.
// Copy security state from origin channel
// to assigned logical channel.
appState[targetChannel] = appState[origChannel];

// Do further processing here

Please refer to the Application Programming Interface for the Java Card Platform, Version
2.2.2 for more information about the API methods described above.

Applet Firewall Operation Requirements

To ensure proper operation and protection, a number of applet firewall checks have
been added to the virtual machine for the Java Card virtual machine (Java Card VM)
regarding security checks on method invocations.

18 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

Applets that implement MultiSelectable are designed to handle calls to
Shareable objects across packages when several applets are active on different logical
channels. In contrast, an applet written for version 2.1 of the Java Card platform, or
an applet written for version 2.2.2 that does not implement MultiSelectable, has
exclusive control over any changes to its internal objects or data when it is selected.
Only when the non-multiselectable applet is in a deselected state can other applets
modify its internal data structures. Therefore, if an applet is non-multiselectable, no
calls to its Shareable objects can be made when it is selected.

Working with Non-MultiSelectable Applets

Applets written for version 2.2.2 of the Java Card platform do not have to implement
the MultiSelectable interface. In this case, the applet assumes that it is uniquely
selected and its owned objects will not be modified via Shareable interface objects
while it is selected. The limitations are imposed when you interact with applets that
do not implement MultiSelectable:

m [t is not possible to select more than one applet simultaneously from a package if
any of the applets you want to select does not implement the MultiSelectable
interface.

m It is not possible to invoke methods of a Shareable object belonging to a non-
multiselectable applet when an applet, belonging to the same group context, is
active.

ISO 7816-4:2005 Specific APDU Commands for
Logical Channel Management

There are two ISO-specific APDU commands that you can use to work with logical
channels in a smart card:

m SELECT FILE - This command selects the specified applet on the specified
channel number. The channel number can be from 0 to 3 and is specified in the
lower two bits of the CLA byte. If the channel is closed, it is opened and the
specified applet is selected on the channel. SELECT FILE commands are
forwarded to the newly selected applet.

m MANAGE CHANNEL - This command can be used to open a new channel from
another channel or close it. It allows you to specify the channel to be used or to
allow the smart card to select the channel. Like SELECT FILE, this command
uses the lower two bits of the CLA byte to specify the channel number. MANAGE
CHANNEL commands are not forwarded to the applet.

When you work with these commands, keep the following guidelines in mind:

m Origin logical channel values are encoded in the two least significant bits of the
CLA byte.

Chapter 2 Working with Logical Channels 19

20

m Logical channel values have a valid range of [0..19] only.

m Logical channel 0 is known as the basic channel, and it cannot be closed.

m At card reset, the basic channel (channel 0) is open. All other channels (1, 2, ...19)
are closed.

The MANAGE CHANNEL and SELECT FILE commands are read by the Java Card RE
dispatcher, which performs the functions specified by the commands, including the
following;:

m Managing logical channels
m Deselecting applets
m Selecting applets

MANAGE CHANNEL OPEN

In response to the MANAGE CHANNEL OPEN command, the dispatcher follows this
procedure:

1. If the origin channel is not open, an error is returned.

2. Determines whether the channel is open or closed. If the channel is open, an error
is returned.

3. Opens the channel.

4. If the origin channel is 0, the default applet (if there is one) is selected in the new
channel.

5. If the origin channel is not 0, the selected applet on the origin channel becomes
the selected applet in new channel.

This MANAGE CHANNEL OPEN command opens a new channel from channel
encoded in Q.:

CLA INS P2 Lc Data Le Data SwW1 SwW2

)OXQ)Ox70)(:(1) F)O)0 |~ |1)OXOR bx90)00

CLA INS P1 P2 Lc Data Le swi1 sw2

ba o W bx b T b pa o

Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

This command produces the following results:

m If channel encoded in Q is the basic channel (channel 0), the card’s default applet
is selected on channel encoded in R. No applet is selected if no default applet is
defined.

m If channel encoded in Q is other than the basic channel (channels 1, 2, ...19), the
selected applet on channel encoded in Q becomes the current applet selected on
channel R.

m The applet on channel encoded in R can either accept or reject selection.

This command returns an error under the following circumstances:

m The applet does not implement the javacard. framework.MultiSelectable
interface, when an attempt to select the applet in more than one channel takes
place.

m The applet rejects selection or throws exception.
m No channel is available.

m Channel encoded in Q is not open.

MANAGE CHANNEL CLOSE

In response to the MANAGE CHANNEL CLOSE command, the dispatcher follows this
procedure:

1. If the origin channel is not open, an error is returned.

2. If the channel to be closed is 0, an error is returned.

3. If the channel to be closed is not open or not available, a warning is thrown.
4. Deselects the applet in the channel to be closed.

5. Closes the logical channel.

This MANAGE CHANNEL CLOSE command closes channel R from channel Q:

CLA INS P1 P2 Lc Data Le Sw1 Sw2

ba P pw px b F b b o

This command closes channel R. Channel R must not be the basic channel (it can be
channel 1, 2, ...19 only).

This command returns an error in the following circumstances:

m Channel encoded in R is the basic channel.

Chapter 2 Working with Logical Channels 21

m Channel encoded in Q is not open.

It returns a warning if channel R is not open.

SELECT FILE

In response to the SELECT FILE command, the dispatcher follows this procedure:
1. If the specified channel is closed, open the channel.

2. Deselect currently selected applet in channel if needed.

3. Select specified applet in the channel.

This SELECT FILE command selects an applet on channel R:

CLA INS P1 P2 Lc Data Le swi1 Sw2

beR)OXA4)Ox04)OXOO |(AID len) |(AID) b bx90 bO

This command produces the following results:

m Channel encoded in R can be any channel (opened or unopened), including the
basic channel.

m The applet identified in the Data section becomes the selected applet on channel
R.

m If channel encoded in R is not open, this command opens channel R.

m If channel encoded in R is open, this command changes the selected applet in the
channel to the one specified.

This command returns an error in the following circumstances:

m The applet cannot be found or is not available. The current applet is left selected
and an error is returned.

m An active applet belonging to the same package does not implement the
javacard. framework.MultiSelectable interface, or if the applet to be
selected does not implement this interface.

m Channel encoded in R is not available.

22 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

CHAPTER 3

Working with APDU I/0O

APDU I/0 is a library included with the Java Card development kit. This library is
used by many Java Card development kit components, such as apdutool, Java Card
platform Workstation Development Environment (Java Card WDE), and the RMI
client framework.

This library can also be used by developers to develop Java Card client applications
and Java Card platform simulators. It provides the means to exchange APDUs by
using the T=0 protocol over TLP224, by using T=1, and by using the PC/SC APL
(However, note that PC/SC is unsupported and may not work on all platforms with
all card readers).

The library is located in the Java Archive (JAR) file apduio. jar.

The APDUI/O API

All publicly available APDU I/O client classes are located in the package
com. sun. javacard.apduio. The following describes the APDU I/O APL

Javadoc tool files for the APDU I/O API are located in this bundle in HTML format
at java_card_kit-2_2_2/doc/en/dev-notes/html/apduiojavadocs and a
compilation of them in PDF format at java_card_kit-2_2_2/doc/en/dev-
notes/pdf/apdiojavadocs.pdf.

APDU I/0 Classes and Interfaces

The APDU 1I/0 classes and interfaces are described in this section.

m class Apdu

23

Represents a pair of APDUs (both C-APDU and R-APDU). Contains various helper
methods to access APDU contents and constants providing standard offsets within
the APDU.

m interface CadClientInterface
Represents an interface from the client to the card reader or a simulator. Includes
methods for powering up, powering down and exchanging APDUs.

s void exchangeApdu (Apdu apdu)

Exchanges a single APDU with the card. Note that the APDU object contains both
incoming and outgoing APDUs.

s public byte[] powerUp/()
Powers up the card and returns ATR (Answer-To-Reset) bytes.
s void powerDown (boolean disconnect)

Powers down the card. The parameter, applicable only to communications with a
simulator, means “close the socket”. Normally, it is true for contacted
connection, false for contactless. See “Two-interface Card Simulation” on

page 25 for more details.

s void powerDown ()
Equivalent to powerDown (true).
m abstract class CadDevice
Factory and a base class for all CadClientInterface implementations included

with the APDU I/0 library. Includes constants for the T=0, T=1 and PC/SC
(unsupported) clients.

The factory method static CadClientInterface

getCadClientInstance (byte protocolType, InputStream in,
OutputStream out), returns a new instance of CadClientInterface. The in
and out streams correspond to a socket connection to a simulator. Protocol type
can be one of:

s CadDevice.PROTOCOL_TO
m CadDevice.PROTOCOL_T1
m CadDevice.PROTOCOL_PCSC

The parameters, InputStream and OutputStream, are not used for PC/SC
(unsupported).

24 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

Exceptions

Various exceptions may be thrown in case of system malfunction or protocol
violations. In all cases, their toString () method returns the cause of failure. In
addition, java.io.IOException may be thrown at any time if the underlying
socket connection is terminated or could not be established.

m CadTransportException extends Exception
m TlException extends CadTransportException

m TLP224Exception extends CadTransportException

Two-interface Card Simulation

To simulate dual-interface cards with the C-language Java Card RE and Java Card
WQDE, the following model is used:

m The simulator (cref or Java Card WDE) listens for communication on two TCP
sockets: (1) and (n+1), where n is the default (9025) or the socket number given in
the command line.

m The client creates two instances of the CadClientInterface, with protocols T=
1 on both. One of these instances communicates on the port (1), while the other
communicates on the port (n+1).

m Each of these client interfaces needs to issue the powerUp command before being
able to exchange APDUs.

m Issuing the powerDown command on the contactless interface closes all
contactless logical channels. After this, the contacted interface is still available to
exchange APDUs. The client also may issue powerUp on a contactless interface
again and continue exchanging APDUs on the contactless interface too.

m Issuing the powerDown command on the contacted interface closes all channels
and causes the simulator (cref or Java Card WDE) to exit. That is, any activity
after powering down the contacted interface requires restarting the simulator and
reestablishing connections between the client and the simulator.

m At most, one socket can be processing an APDU at any time. The client may send
the next APDU only after the response of the previous APDU is received. This
means, behavior of the client+simulator still remains deterministic and
reproducible.

m If you have a source release of the Java Card development kit, you can see a
sample implementation of such a dual-interface client in the file
ReaderWriter.java inside the apdutool source tree.

Chapter 3 Working with APDU I/O 25

Examples of Use

The following sections give examples of how to use the APDU I/O APL

To Connect To a Simulator

To establish a connection to a simulator (such as cref of Java Card WDE), use the
following code.

CadClientInterface cad;

Socket sock;

sock = new Socket(“localhost”, 9025);

InputStream is = sock.getInputStream() ;

OutputStream os = sock.getOutputStream() ;
cad=CadDevice.getCadClientInstance (CadDevice.PROTOCOL_T0, is, os);

This code establishes a T=0 connection to a simulator listening to port 9025 on
localhost. To open a T=1 connection instead, in the last line replace PROTOCOL_TO
with PROTOCOL_T1.

Note: for dual-interface simulation simply open two T=1 connections on ports (1)
and (n+1), as described in “Two-interface Card Simulation” on page 25.

To Establish a T=0 Connection To a Card

To establish a T=0 connection to a card inserted in a TLP224 card reader, which is
connected to a serial port, use the following code.

String port = “coml”; // serial port's name

CommPortIdentifier portId = CommPortIdentifier.getPortIdentifier (port);
String appname = “Name of your application”;

int timeout = 30000;

CommPort commPort = portId.open (appname, timeout) ;

InputStream is = commPort.getInputStream() ;

OutputStream os = commPort.getOutputStream() ;
cad=CadDevice.getCadClientInstance (CadDevice.PROTOCOL_TO0, is, os);

Note: for this code to work, you need a TLP224-compatible card reader, which is not
widely available. You will also need the javax.commn library installed on your
machine. See the Development Kit User’s Guide for the Java Card Platform, Version 2.2.2
for details on how to obtain this library.

26 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

To Establish a Connection To a PC/SC-
Compatible Card Reader

To establish a connection to the default PC/SC-compatible card reader
(unsupported) installed on the machine, use the following code.

cad=CadDevice.getCadClientInstance (CadDevice.PROTOCOL_PCSC, null,
null) ;

To Power Up And Power Down the Card

To power up the card, use the following code.
cad.powerUp () ;

To power down the card and close the socket connection (for simulators only), use
either of the following code lines.

cad.powerDown (true) ;

or

cad.powerDown () ;

To power down, but leave the socket open, use the following code. If the simulator
continues to run (which is true if this is contactless interface of the C-language Java
Card RE or Java Card WDE), you can issue powerUp () on this card again and
continue exchanging APDUs.

cad.powerDown (false) ;

The dual-interface C-language Java Card RE is implemented in such a way that once
the client establishes connection to a port, the next command must be powerUp on
that port.

For example, the following sequence is valid:
. Connect on "contacted" port.

. Send powerUp to it.

. Exchange some APDUs.

. Connect on "contactless" port.

. Send powerUp to it.

. Exchange more APDUs.

However, the following sequence is not valid:

Chapter 3 Working with APDU I/O 27

1. Connect on "contacted" port.
2. Connect on "contactless" port.

3. Send powerUp to any port.

To Exchange APDUs

To exchange APDU, first create a new APDU object using the following code:
Apdu apdu = new Apdu() ;

Copy the header (cLaA, INS, P1, P2) of the APDU to be sent into the
apdu . command field.

Set the data to be sent and the Lc using the following code:
apdu.setDatalIn(datalIn, Lc);

where the array dataIn contains the C-APDU data, and the Lc contains the data
length.

Set the number of bytes expected into the apdu. Le field.

Exchange the APDU with a card or simulator using the following code:

cad.exchangeApdu (apdu) ;

After the exchange, apdu . Le contains the number of bytes received from the card or
simulator, apdu . dataOut contains the data received, and apdu . swlsw2 contains
the SW1 and SW2 status bytes.

These fields can be accessed through the corresponding get methods.

To Print the APDU

The following code prints both C-APDU and R-APDU in the apdutool output
format.

System.out.println (apdu)

28 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

CHAPTER 4

Developing RMI Applications for
the Java Card Platform

This chapter describes how to write RMI applications for the Java Card platform. In
this release, you can run and debug Java Card remote method invocation (Java Card
RMI) applications in the C language Java Card RE and the Java Card platform
Workstation Development Environment (Java Card WDE).

Developing an RMI Applet for the Java
Card Platform

Following are the main steps for developing an RMI applet for the Java Card
platform:

. Define remote interfaces
. Develop classes implementing the remote interfaces

. Develop the main class for the applet

For a simple applet, the main class of the applet can also be the class implementing
the remote interface.

Generating Stubs

The Java Card RMI Client framework requires stubs only when the
remote_ref_with_class format is used for passing remote references. These
stubs of remote classes of applets must be pr-generated and available on the client.
When the remote_ref_with_interfaces format is used, stubs are not necessary.

29

In this example, Sun Microsystems’ standard RMI Compiler (rmic) is used to
generate these stubs.

Following is the command to run the rmic:
rmic -v1.2 -classpath path -d output_dir class_name

where:

path includes the path to the remote class of your sample applet and to the file
javacardframework. jar.

output_dir is the directory in which to place the resulting stubs
class_name is the name of the remote class

The -v1.2 flag is required by the RMI client framework for the Java Card
platform.

The rmic must be called for each remote class in your applet.

Note — You need to generate stubs only for remote classes that list a remote
interface in their implements clause.

The file javacardframework. jar is provided in version 2.2.2 of the Java Card
development kit. This JAR file contains compiled implementations of packages
javacard. framework, javacard. framework.service, and
javacard.security. Classes in these packages might be referenced by Java Card
RMI applets and thus might be needed by the rmic to generate stubs.

Running a Java Card RMI Applet

The server part (the Java Card RMI-enabled applet) can be run on both the C-
language Java Card RE and Java Card WDE.

To run the applet on the C-language Java Card RE, the standard procedures apply:
the applet must be installed first, using the installer applet. After the applet is
installed, the EEPROM state can be saved and used to run the C-language Java Card
RE against the Java Card RMI client.

The simplest way to run a Java Card RMI-enabled applet on the Java Card WDE is to
add it to the WDE configuration file on the first line. This uses the fact that the Java
Card WDE automatically installs the first applet on “power up.” The Java Card
WDE is a very convenient environment to debug Java Card RMI applets. Of course,
all of the standard limitations (such as absence of firewall support) apply.

30 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

Running the Java Card RMI Client Program

The client program can be developed and compiled using javac or your favorite
IDE. To compile the client, the remote interfaces for your applet must be present in
your classpath.

Running the client program has the following requirements.

The client framework file jecrmiclientframework. jar is present in the
classpath. This file contains all the client framework and necessary classes from
the card framework.

The file jccclient . properties is present in one of the directories specified in
the classpath.

The remote interfaces and stubs for your applet are present in the classpath.
For a sample command line to run a client program, refer to the file rmidemo or
rmidemo.bat in this directory.

The jccclient.properties file supplied in the samples/src/demo
directory. This file specifies parameters for
com.sun.javacard.clientlib.APDUIOCardAccessor. To be accessible at
runtime, this file must be located in one of the directories listed in the
classpath. This parameter connection specified in the file can be configured to
be TCP, serial or PC/SC (unsupported). The protocol being used can be T0 or T1.

Basic Example

The basic example is the Java Card platform equivalent of “Hello World,” which is a
program that manages a counter remotely, and is able to decrement, increment, and
return the value of the counter.

Main Program

As for any Java Card RMI program, the first step is to define the interface to be used
as contract between the server (the Java Card technology-based application) and its
clients (the terminal applications):

Chapter 4 Developing RMI Applications for the Java Card Platform 31

32

package examples.purse ;
import java.rmi.* ;
import javacard.framework.* ;
public interface Purse extends Remote {
public static final short MAX AMOUNT = 400 ;
public static final short REQUEST FAILED = 0x0102 ;
public short debit (short amount) throws RemoteException, UserException;
public short credit(short amount) throws RemoteException,
UserException ;
public short getBalance() throws RemoteException, UserException ;
}

This is a typical Java Card RMI interface in the following ways:

m The interface type extends the java.rmi.Remote interface. This interface is a
tagging interface that identifies the interface as defining a remotely accessible
object.

m Every method in the interface must be declared as throwing a RemoteException
or one of its superclasses (I0Exception or Exception). This exception is
required to encapsulate all the communication problems that might occur during
a remote invocation of the method. In addition, the credit, debit, and
getBalance methods also throw the UserException to indicate application-
specific errors.

m The interface can also define values for constants that might be used in the
communication between the client and the server. The Purse interface defines a
constant MAX_AMOUNT that represents the maximum allowed value for the
transaction amount parameter. It also defines a reason code REQUEST_FAILED for
the UserException qualifier.

Implement a Remote Interface

The next step provides an implementation for this interface. This implementation
runs on a Java Card platform, and it therefore needs to use only features that are
supported by a Java Card platform:

Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

package examples.purse ;
import javacard.framework.* ;
import javacard.framework.service.* ;
import java.rmi.* ;
public class Purselmpl extends CardRemoteObject implements Purse
{
private short balance ;
PurseImpl ()
{
super () ;
balance = 0 ;
}
public short debit(short amount) throws RemoteException, UserException

{

if ((amount < 0)||(amount > MAX AMOUNT))
UserException.throwIt (REQUEST FAILED) ;
balance -= amount ;
return balance ;
}
public short credit(short amount) throws RemoteException, UserException
{
if ((amount < 0)||(balance < amount))
UserException.throwIt (REQUEST FAILED) ;
balance -= amount ;
return balance ;

}
public short getBalance() throws RemoteException, UserException
{

return balance ;

}

Here, the remote interface is the Purse interface, which declares the remotely
accessible methods. By implementing this interface, the class establishes a contract
between itself and the compiler, by which the class promises that it will provide
method bodies for all the methods declared in the interface:

public class PurseImpl extends CardRemoteObject implements Purse

The class also extends the javacard. framework.service.CardRemoteObject
class. This class provides our class with basic support for remote objects, and in
particular the ability to export or unexport an object.

Define the Constructor for the Remote Object

The constructor for a remote class provides the same functionality as the constructor
of a non-remote class: it initializes the variables of each newly created instance of the
class.

Chapter 4 Developing RMI Applications for the Java Card Platform 33

In addition, the remote object instance will need to be exported. Exporting a remote
object makes it available to accept incoming remote method requests. By extending
CardRemoteObject, a class guarantees that its instances are exported automatically
upon creation on the card.

If a remote object does not extend CardRemoteObject (directly or indirectly), you
must explicitly export the remote object by calling the CardRemoteObject . export
method in the constructor of your class (or in any appropriate initialization method).
Of course, this class must still implement a remote interface.

To review:

The implementation class for a remote object needs to do the following:

m Implement a remote interface
m Export the object so that it can accept incoming remote method calls

Provide an Implementation for Each Remote Method

The implementation class for a remote object contains the code that implements each
of the remote methods specified in the remote interface. For example, here is the
implementation of the method that debits the purse:

public short debit(short amount) throws RemoteException, UserException

if ((amount < 0)||(balance < amount)
UserException.throwIt (REQUEST FAILED) ;
balance -= amount ;

return balance ;

}

An operation is only allowed if the value of its parameter is compatible with the
current state of the purse object. In this particular case, the application only checks
that the amounts handled are positive and that the balance of the purse always
remains positive.

In Java Card RMI, the arguments to and return values from remote methods are
restricted. The main reason for this limitation is that the Java Card platform does not
support object serialization. Following are the rules for the Java Card platform:

m The arguments to remote methods can be of any supported integral type (such
as boolean, byte, short and int), or any single-dimensional arrays of these
integral types.

Note — The int type is optionally supported on the Java Card platform, so
applications that use this type might not run on all platforms.

m The return value from a remote method can be any type supported as arguments,
as well as any remote interface type. The method can also return void.

34 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

On the other hand, object passing in Java Card RMI follows the normal RMI rules:

m By default, non-remote objects are passed by copy, which means that all data
members of an object are copied, except those marked static or transient. In
the case of the Java Card platform, this rule is trivial to apply, because the only
objects concerned are arrays of integral types.

m Remote objects are passed by reference. In the case of the Java Card platform,
remote objects can only be passed as return values. A reference to a remote object
is actually a reference to a stub, which is a client-side proxy for the remote objects.
Stubs are needed only when the format remote_ref_with_class is used for
passing remote references. When another format, such as
remote_ref_with_interfaces, is used, stubs are not necessary. Stubs are
described in “Generate the Stubs” on page 41.

Note — Even though the semantics of the Java Card platform transient arrays are
somewhat similar to transient fields in the Java programming language, different
rules apply. Java Card platform contents are copied in Java Card RMI and passed by
value when they are returned from a remote method.

A class can define methods not specified in a remote interface, but they can only be
invoked on-card within the Java Card VM and cannot be invoked remotely.

Building an Applet

In version 2.2.2 of the Java Card platform (as in version 2.1), all applications must
include a class that inherits from javacard. framework.Applet, which will
provide an interface with the outside world. This also applies to applications that are
based on remote objects, for two main reasons:

m The remote objects must be instantiated and initialized, which can be done in an
applet’s install method.

m The remote objects must communicate with the outside world, which can be done
in an applet’s process method.

For conversion, an applet should be assigned with an AID known on the client side,
0x00;0x01:0x02:0x03:0x04:0x05:0x06:0x07:0x08, since this AID is used in
the client program.

Following is the basic code for such an applet:

Chapter 4 Developing RMI Applications for the Java Card Platform 35

package examples.purse ;
import javacard.framework.* ;
import javacard.framework.service.* ;
import java.rmi.*;
public class PurseApplet extends Applet
{
private Dispatcher dispatcher ;
private PurseApplet ()
{
// Allocates an RMI service and sets for the Java Card platform
// the initial reference
RemoteService rmi = new RMIService(new PurseImpl()) ;
// Allocates a dispatcher for the remote service
dispatcher = new Dispatcher ((short)l) ;
dispatcher.addService (rmi, Dispatcher.PROCESS_COMMAND) ;
}
public static void install (byte[] buffer, short offset, byte length)
{
// Allocates and registers the applet
(new Purselpplet()).register() ;
}
public void process (APDU apdu)
{

dispatcher.process (apdu) ;

Preparing and Registering the Remote Object

The PurseApplet constructor contains the initialization code for the remote object.
First, a javacard. framework.service.RMIService object must be allocated.
This service is an object that knows how to handle all the incoming APDU commands
related to the Java Card RMI protocol. The service must be initialized to allow
remote methods on an instance of the PurseImpl class. A new instance of
PurseImpl is created, and is specified as the initial reference parameter to the
RMIService constructor as shown in the following code snippet. The initial
reference is the reference that is made public by an applet to all its clients. It is used
as a bootstrap for a client session, and is similar to that registered by a Java RMI
server to the Java Card RMI registry.

RemoteService rmi = new RMIService(new PurseImpl()) ;
Then, a dispatcher is created and initialized. A dispatcher is the glue among several

services. In this example, the initialization is quite simple, because there is a single
service to initialize:

dispatcher = new Dispatcher ((short)l) ;

dispatcher.addService (rmi, Dispatcher.PROCESS_COMMAND) ;

36 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

Finally, the applet must register itself to the Java Card RE to be made selectable. This
is done in the install method, where the applet constructor is invoked and
immediately registered:

(new PurseApplet()) .register() ;

Processing the Incoming Commands

The processing of the incoming commands is entirely delegated to the Java Card
RMI service, which knows how to handle all the incoming requests. The service also
implements a default behavior for the handling of any request that it does not
recognize. In Java Card RMI, the following kinds of requests that can be handled:

m Selection request, to which the service responds by sending its initial remote
reference

m Method invocation request, to which the service responds by performing the
actual method invocation and returning the result

To perform these actions, the service needs privileged access to some resources that
are owned by the Java Card RE (in particular, privileged access is needed to perform
the method invocation). The applet delegates processing to the Java Card RMI
service from its process method as follows:

dispatcher.process (apdu) ;

Writing a Client

The client application runs on a terminal supporting a Java Virtual Machine!
environment such as Java 2 Platform, Standard Edition (J2SE™ platform) or Java 2
Platform, Micro Edition (J2ME™ platform).

The PurseClient application interacts with the remote stub classes generated by a
stub generation tool and the Java Card platform-specific information managed by
the Java Card platform client-side framework located in packages
com.sun.javacard.clientlib and com.sun.javacard.rmiclientlib.

The following example uses standard Java RMIC compiler-generated client-side
stubs. The client application as well as the Java Card client-side framework rely on
the APDU I/0 library for managing and communicating with the card reader and
the card on which the Java Card applet PurseApplet resides. This makes the client
application very portable on J2SE platforms.

The following example shows a very simple PurseClient application that is the
client application of the Java Card technology-based program PurseApplet:

1. The terms "Java Virtual Machine" and "JVM" mean a Virtual Machine for the Java platform.

Chapter 4 Developing RMI Applications for the Java Card Platform 37

import examples.purse.* ;
import javacard.framework.UserException ;

public class PurseClient extends java.lang.Object {

public static void main(java.lang.String[] argv) {
// arg[0] contains the debit amount
short debitAmount = (short) Integer.parselnt(argv[0]) ;

CardAccessor ca = null;

// open and powerup the card

ca = new ApdulOCardAccessor () ;
// create an RMI connector instance for the Java Card
platform

JCRMIConnect JjcRMI = new JCRMIConnect (ca);

byte[] appAID = new byte[] {0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08};
// select the Java Card applet
JjCcRMI.selectApplet (RMI_DEMO_AID,
JCRMIConnect .REF_WITH_CLASS NAME) ;

or
JjCcRMI.selectApplet (RMI_DEMO_AID, JCRMIConnect.REF_WITH_ INTERFACE NAMES) ;
// obtain the initial reference to the Purse interface

Purse myPurse = (Purse) JjcRMI.getInitialReference() ;
// debit the requested amount

try {
short balance = myPurse.debit (debitAmount) ;
}catch (UserException jce) {

short reasonCode = jce.getReason() ;

38 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

// process UserException reason information

}
// display the balance to user

}catch (Exception e) {
e.printStackTrace() ;
} finally {

try {
if(cal=null) {
ca.closeCard() ;
}
}catch (Exception e) {
e.printStackTrace() ;
}

}
}
}

Initializing and Shutting Down the Card Connection

The client application must open the connection to the card and close it at the end.

Note — ApdulOCardAccessor takes its settings from the file
jecclient.properties. When one of the RMI related demos runs, its script
modifies the CLASSPATH to include this file, which is located at java_card_kit-
2_2_2/samples/src_client in the binary release bundle for Solaris™ or Linux
platforms and at java_card_kit-2_2_2\samples\src_client on the Windows
platform.

The following code shows opening and closing the connection using the RMI client
framework:

CardAccessor ca = null;
// The following line initializes card connection according to

// parameters listed in the jcclient.properties file:
ca = new ApdulOCardAccessor();

// The following line powers down the card and closes the connection:
ca.closeCard() ;

Chapter 4 Developing RMI Applications for the Java Card Platform 39

Creating and Using a CardAccessor Object

To access the Java Card applet using remote methods, the client application must
obtain an instance of the CardAccessor interface. The ApduIO class implements the
CardAccessor interface and is included in the framework.

The CardAccessor interface is a platform-independent and framework-
independent interface that is used by the RMI framework for the Java Card platform
to communicate with the card. The Cardaccessor object is then provided as a
parameter during construction of the JavaCardRMIConnect class to initiate an RMI
dialogue for the Java Card platform as the following code shows:

// create an RMI connection object for the Java Card platform

JavaCardRMIConnect jcRMI = new JavaCardRMIConnect (myCS) ;

Selecting the Java Card Applet and Obtaining the Initial Reference

To invoke methods on the remote objects of the Java Card applet PurseApplet on
the card, it must first be selected using the AID:

// select the Java Card applet
byte[] appAID = new byte[] {0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08} ;
jcRMI.selectApplet (appAID) ;

Then, the client must obtain the initial reference remote object for PurseApplet.
JavaCardRMIConnect returns an instance of a stub class corresponding to the
PurseImpl class on the card which implements the Purse interface. The client
application knows beforehand that the PurseApplet’s initial remote reference
implements the Purse interface and therefore casts it appropriately:

// obtain the initial reference to the Purse interface

Purse myPurse = (Purse) jcRMI.getInitialReference() ;

Using Remote Objects in Remote Method Invocations

The client can now invoke remote methods on the initial reference object. The
remote methods are declared in the Purse interface. The following code shows the
client invoking the debit method. Note how an UserException exception thrown
by the remote method is caught by the client code in a normal Java programming
language style.

// debit the requested amount
try {
short balance = myPurse.debit (debitAmount) ;
}catch (UserException jce) {
short reasonCode = jce.getReason() ;
// process on card exception reason information

40 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

Generate the Stubs

The client-side scenario uses RMIC generated stubs for the remote classes. RMIC is
the Java RMI stub compiler. For the client application PurseClient to execute
correctly on the terminal, it needs these remote stub classes and the remote interface
class files it uses to be accessible in its classpath.

The stub class PurseImpl_Stub.class for the PurseImpl class is produced by
running the standard JDK1.5 RMIC compiler. For example, when in the
examples/purse directory, enter the following commands:

Solaris and Linux platforms:

rmic -classpath ../..;$JC_HOME/lib/javacardframework.jar -d ../..
-vl.2 examples.purse.PurselImpl

Microsoft Windows platform:

rmic -classpath ../..;%JC_HOME%/lib/javacardframework.jar -d ../..
-v1l.2 examples.purse.PurselImpl

This produces a stub class called examples.purse.PurseImpl_Stub.

Thus, for PurseClient to run correctly on the terminal, the following files must be
present in the examples/purse directory and accessible via its classpath or from
class loaders:

m PurseImpl_Stub.class

m Purse.class

Card Terminal Interaction

When a Java Card technology-enabled smart card is powered up, the card sends an
ATR (Answer to Reset) to the terminal. The Card Accessor returns the value of the
ATR to the client program.

Terminal -—— ATR -t Card

FIGURE 4-1 Smart Card Sends an ATR to the Terminal

When the PurseClient application calls the selectApplet method of
JavaCardRMIConnect, it sends a SELECT APDU command to the card via the
CardAccessor object. This results in a File Control Information (FCI) APDU
response from the RMIService instance of PurseApplet on the card in a TLV (Tag
Length Value) format that includes the initial reference remote object information,
which FIGURE 4-2 illustrates.

Chapter 4 Developing RMI Applications for the Java Card Platform 41

Terminal —W= SELECT (0x00, (xA4, b4, Gel)) ——F Card
Terminal ~— FCI with Initial Reference Information ~#—— Card

FIGURE 4-2 Terminal Sends a SELECT Command to the Smart Card, which Returns FCI

Later, when the PurseClient application calls the debit method of the remote
interface Purse, the PurseImpl_Stub object sends an invoke command to the card
via the CardAccessor object, identifying the remote object reference, interface,
method, and parameter data for method invocation. The RMIService instance of
PurseApplet unmarshalls this information and invokes the debit method of the
PurseImpl instance, and returns the return value in the response APDU, which
FIGURE 4-3 illustrates.

Terminal — M= INVOKE (Indt Ref, debit, short val) — i Card
Terminal =4—— RETURM with short value e T | 8

FIGURE 4-3 Terminal Sends an INVOKE Command to the Smart Card, Which Returns a
Value

Adding Security

This first example is extremely simple and is not realistic. In particular, it does not
include any kind of security. Users are not authenticated and no transport security is
provided. Of course, every smart card that implements the Java Card platform
includes such security mechanisms, because they are central to Java Card
technology.

The following section describes how to add security support to the Purse example.

The Purse interface in the package examples.securepurse is similar to the
Purse interface in the previous code sample. In addition, it might include reason
codes for exceptions to report security violations to the terminal. Replace it with
examples.securepurse. The interface does not include any implementation,
which means that, in particular, it does not include any support for security.

The applet keeps its original organization but it also includes additional code that is
dedicated to the management of security.

42 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

package examples.securepurse ;
import javacard.framework.* ;
import javacard.framework.service.* ;
import java.rmi.* ;
public class SecurePurseImpl implements Purse
{
private short balance ;
private SecurityService security ;
SecurePurselImpl (SecurityService security)
{

this.security = security ;

public short debit(short amount) throws RemoteException, UserException
{
if
((!'security.isCommandSecure (SecurityService.PROPERTY_INPUT INTEGRITY))
|
(!security.isAuthenticated (SecurityService.PRINCIPAL_CARDHOLDER)))
UserException.throwIt (REQUEST FAILED) ;

if ((amount < 0)|| (balance < amount))
UserException.throwIt (REQUEST FAILED) ;
balance -= amount ;

return balance ;

public short credit(short amount) throws RemoteException, UserException
{
if
((!security.isCommandSecure (SecurityService.PROPERTY_INPUT INTEGRITY))
(

security.isAuthenticated (SecurityService.PRINCIPAIL,_APP PROVIDER)))

UserException.throwIt (REQUEST FAILED) ;

if ((amount < 0)||(amount > MAX AMOUNT))
UserException.throwIt (REQUEST FAILED) ;

balance += amount ;

return balance ;

public short getBalance() throws RemoteException, UserException
{
if ((!security. isAuthenticated(SecurityService.PRINCIPAIL,_CARDHOLDER))
&&
(!security.isAuthenticated (SecurityService.PRINCIPAL_APP_PROVIDER)))
UserException.throwIt (REQUEST FAILED) ;
return balance ;

Chapter 4 Developing RMI Applications for the Java Card Platform

43

Initialize a Security Service

In this example, basic security services (principal identification and authentication,
secure communication channel) are provided by an object that implements the
SecurityService interface. Because a generic remote object must not be
dependent on a particular kind of security service, it must take a reference to this
object as a parameter to its constructor. This is exactly what happens here, where the
reference to the object is stored in a dedicated private field:

private SecurityService security ;

The SecurityService interface is part of the extended application development
framework and offers an API that can then be used to check on the current security
status.

Use the Service to Check the Current Security Status

In the example, this following required security behaviors for the applet are
assumed:

m The debit method is authorized only if it is sent through a secure channel that
ensures at least the integrity of input data, and if the cardholder is successfully
authenticated.

m The credit method is authorized only if it is sent through a secure channel that
ensures at least the integrity of input data, and if the application issuer is
successfully authenticated.

m The getBalance method is authorized only if the cardholder or the application
issuer is successfully authenticated.

The SecurityService provides methods and constants that allow the
implementation to perform such checks. For instance, following is the code for the
checks on the debit method:

if

((!security.isCommandSecure (SecurityService.PROPERTY_INPUT_ INTEGRITY))

(security.isAuthenticated (SecurityService.ID_CARDHOLDER)))
UserException.throwIt (REQUEST FAILED) ;

If one of the two conditions is not satisfied, the remote object throws an exception.
This exception is caught by the dispatcher and forwarded to the client.

Implementing a Security Service

The following example shows how to implement a security service.

44 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

package com.sun.javacard.samples.SecureRMIDemo ;
import javacard.framework.* ;
import javacard.framework.service.* ;

public class MySecurityService extends BasicService implements SecurityService
{
// list IDs of known parties...
private static final byte[] PRINCIPAL_APP PROVIDER_ID = {0x12, 0x34} ;
private static final byte[] PRINCIPAL_CARDHOLDER ID = {0x43, 0x21} ;
private OwnerPIN provider pin, cardholder pin = null ;
// and the security-related session flags

public MySecurityService() {
// initialize the PINs

}
public boolean processDataIn(APDU apdu) {
if (selectingApplet()) {
// reset all flags

}
else {

return preprocessCommandAPDU (apdu) ;
}

public boolean isCommandSecure (byte properties) throws ServiceException {
// return the value of appropriate flag

public boolean isAuthenticated(short principal) throws ServiceException {
// return the value of appropriate flag

}

private byte authenticated ;

private boolean preprocessCommandAPDU (APDU apdu) {
receivelInData (apdu) ;
1f (checkAndRemoveChecksum (apdu)) {

Chapter 4 Developing RMI Applications for the Java Card Platform 45

// set DATA_INTEGRITY flag
}

else {
// reset DATA_ INTEGRITY flag
}
return false; // other services may also preprocess the data

}
private boolean checkAndRemoveChecksum(APDU apdu) {

// remove the checksum
// return true if checksum OK, false otherwise
}
public boolean processCommand (APDU apdu) {
if (isAuthenticate (apdu)) {
receiveInData (apdu) ;
// check PIN
// set AUTHENTICATED flags

return true; // processing of the command is finished
}
else {
return false ; // this command was addressed to another

// service - no processing is done

}
public boolean processDataOut (APDU apdu) {

// add checksum to outgoing data
return false; // other services may also postprocess outgoing data

}

private boolean isAuthenticate (APDU command) {
// check values of CLA and INS bytes

Building an Applet

The supporting applet also must undergo some significant changes, in particular
regarding the initialization of the remote object:

46 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

package examples.securepurse ;

import javacard.framework.* ;

import javacard.framework.service.* ;

import java.rmi.* ;

import com.sun.javacard.samples.SecureRMIDemo.MySecurityService ;

public class SecurePurseApplet extends Applet
{
Dispatcher dispatcher ;
private SecurePurselpplet ()
{
SecurityService sec ;
// First get a security service
sec = new MySecurityService() ;
// Allocates an RMI service for the Java Card platform and
// sets the initial reference
RemoteService rmi = new RMIService(new SecurePurselImpl (sec)) ;
// Allocates and initializes a dispatcher for the remote object
dispatcher = new Dispatcher ((short)2) ;
dispatcher.addService (rmi, Dispatcher.PROCESS_COMMAND) ;
dispatcher.addService (sec, Dispatcher.PROCESS_INPUT DATA) ;

}
public static void install (byte[] buffer, short offset, byte length)

{
// Allocates and registers the applet
(new SecurePurselApplet()).register() ;
}
public void process (APDU apdu)
{
dispatcher.process (apdu) ;

}

The security service that is used by the remote object must be initialized at some
point. Here, this is done in the constructor for the SecurePurseApplet:

sec = new MySecurityService() ;
The initialization then goes on with the initialization of the Java Card RMI service.

The only new thing here is that the remote object being allocated and set as the
initial reference is now a SecurePurseImpl:

RemoteService rmi = new RMIService(new SecurePurseImpl (sec));
Next, the dispatcher must be initialized. Here, it must dispatch simple Java Card
RMI requests and security-related requests (such as EXTERNAL AUTHENTICATE). In

fact, the security service handles these requests directly. First, allocate a dispatcher
and inform it that it will delegate commands to two different services:

dispatcher = new Dispatcher ((short)2);

Chapter 4 Developing RMI Applications for the Java Card Platform 47

Then, register services with the dispatcher. The security service is registered as a
service that performs preprocessing operations on incoming commands, and the
Java Card RMI service is registered as a service that processes the command
requested:

dispatcher.addService (rmi, Dispatcher.PROCESS_COMMAND) ;

dispatcher.addService(sec, Dispatcher.PROCESS_INPUT_DATA) ;

The rest of the class (install and process methods) remain unchanged.

Writing a Client

The driver client application itself only changes minimally to account for the
authentication and integrity needs of SecurePurseApplet. It must also interact
with the user for identification. Hence, a subclass of ApduIO_Card_Accessor must
be developed to provide these additional interactions and the transport filtering
required.

Following is the new SecurePurseClient application:

import examples.purse.* ;
import javacard.framework.UserException ;

public class PurseClient extends java.lang.Object {

public static void main(java.lang.String[] argv) {
// arg[0] contains the debit amount
short debitAmount = (short) Integer.parselnt(argv[0]) ;
CustomCardAccessor cca = null;
try {
// open and powerup the card - using CustomCardAccessor
cca = new CustomCardAccessor (new ApdulOCardAccessor()) ;
// create an RMI connector instance for the Java Card
platform
JCRMIConnect jcRMI = new JCRMIConnect (ca);

byte[] appAID = new byte[] {0x01,0x02,0x03,0x04,0x05,0x06,0x07, 0x08};
// select the Java Card applet

JjcRMI.selectApplet (RMI_DEMO_AID,
JCRMIConnect .REF_WITH_CLASS NAME) ;

or

JCRMI.selectApplet (RMI_DEMO_AID, JCRMIConnect.REF _WITH INTERFACE NAMES) ;

48 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

// give your PIN
if (! cca.authenticateUser (PRINCIPAL_CARDHOLDER ID)){
throw new RemoteException (msg.getString("msg04"));

// obtain the initial reference to the Purse interface
Purse myPurse = (Purse) jcRMI.getInitialReference() ;
// debit the requested amount

try {

short balance = myPurse.debit (debitAmount) ;
}catch (UserException jce) {

short reasonCode = jce.getReason() ;

// process UserException reason information

}
// display the balance to user

}catch (Exception e) {
e.printStackTrace() ;
} finally {
try {
if(cal=null) {
cca.closeCard() ;
}
}catch (Exception e) {
e.printStackTrace() ;
}

}
}
}

Note that the CustomCardAccessor instance is now obtained instead of
ApdulIOCardAccessor:

cca = new CustomCardAccessor (new ApdulOCardAccessor());
An extra step to authenticate with the SecurePurseApplet after selectApplet is

added. This invokes a new method in CustomCardAccessor to interact with the
card using the user’s credentials:

if (! cca.authenticateUser (PRINCIPAIL._CARDHOLDER_ID)) {
// handle error

}

The rest of SecurePurseClient is the same as PurseClient.

Chapter 4 Developing RMI Applications for the Java Card Platform 49

Writing a CustomCardAccessor Class

The SecurePurseClient application uses a subclass of Cardaccessor called
CustomCardAccessor to perform user authentication functions and to sign every
message sent thereafter for integrity purposes:

package examples.securepurseclient;

public class CustomCardAccessor extends
ApduIOCardAccessor {
/** Creates new CustomCardAccessor */
public CustomCardAccessor () {
}
public byte[] exchangeAPDU(byte[] sendData)
throws java.io.IOException ({

byte[] macSignature = null ;
byte[] dataWithMAC = new byte[sendData.length + 4 1 ;

// sign the sendData data using session key
// sign the data in commandBuffer using the user's session key

// add generated MAC signature to data in buffer before sending

return super.exchangeAPDU(dataWithMAC) ;
}
boolean authenticateUser(short userKey) {
byte[] externalAuthCommand = null ;

// build and send the appropriate commands to the
// applet to authenticate the user using the user Key
// and additional info provided
try {
byte[] response = super.exchangeAPDU (externalAuthCommand) ;
//
}catch (Exception e) {
// analyze
return false ;
}
// Then compute the session key for later use
return true; //successful authentication

The CustomCardAccessor class introduces the authenticateUser method to
send APDU commands to the SecurePurselpplet on the card to authenticate the
user described by the userKey parameter and other parameters and to compute a
transport key. It invokes super . sendCommandAPDU method to send the command
without modification.

50 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

This CustomCardAccessor class also reimplements the exchangeAPDU method
declared in a superclass CardAccessor to sign each message before it is sent out by
super .exchangeAPDU.

Chapter 4 Developing RMI Applications for the Java Card Platform 51

52 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

CHAPTER 5

Using Extended APDU

The extended APDU feature in the Java Card Platform, v2.2.2, allows applet
developers to take advantage of extended APDU functionality, as defined in the ISO
7816 specification. Extended APDU allows large amounts of data to be sent to the
card, processed appropriately, and sent back to the terminal, in a more efficient way.
Instead of having to re-issue multiple APDU messages to complete an operation
requiring large volumes of data, and requiring the developer to code the application
to keep a state across such multiple APDU commands, extended APDU allows
applets to perform this function more efficiently with one large APDU exchange.

Extended APDU can be beneficial when dealing with large amounts of information.
For example, applications such as signature verification, biometrics verification and
image storage and retrieval could greatly benefit from this feature. Extended APDU
implementations can easily be implemented if the underlying transport protocol is
T=1, while applets developed for T=0 cards would need special logic and care to
work correctly.

Extended APDU Nominal Cases

The ISO 7816-4:2005 specification defines an extended APDU as any APDU whose
payload data, response data or expected data length exceeds the 256 byte limit.
Therefore, the four traditional cases are redefined as follows:

m Case 1. As in short length, this case is not affected.

m Case 2S. The legacy case 2 from previous Java Card technology releases. LE has a
value of 1 to 255.

m Case 2E. The extended version of case 2S, where LE is greater than 255.
m Case 3S. The legacy case 3 case. LC is less than 256 bytes of data, and LE is zero.

m Case 3E. The extended version of Case 3, where LC is greater than 255, and LE is
Zero.

53

m Case 4S. The legacy case 4. LC and LE are less than 256 bytes of data.
m Case 4E. The extended version of Case 4. LC or LE are greater than 256 bytes of

data.

Extended APDU Format

To express extended length, the APDU format has changed. The table below
summarizes the format defined by ISO 7816-4:2005 for extended length APDU. Any
APDU classified as extended must follow this format.

TABLE 5-1 Extended APDU Format

Field

Description

Number of Bytes

Command Header
Command Header
Command Header
LC Field

Data Field

LE Field

Response Data

Response Status

Class byte CLA

Instruction byte INS

Parameter bytes P1- P2

Absent for Nc = 0. Present for Nc > 0
Absent if Nc = 0, present if Nc >0
Absent for Ne = 0, present for Ne > 0
Absent if Nr = 0, present if Nr >0
Status bytes SW1 SW2

NOTATION

Nc = command data length

Ne = expected response data length
Nr = actual response data length

1

1

2

0,1,0or3

Nc
0,1,20r3
Nr (max. Ne)
2

The encoding rules are defined as:

For LC:

m If LC field is absent, Nc = 0.

m If LC is present as one byte with values between 01 and FF, then Nc = 1..255
accordingly, and it will be a short field.

m If LC is present as an extended field, then it will be three bytes in length: byte one
will be 00, bytes two and three will contain a 16-bit value representing the length
of the data Nc with values between 1 and 65535.

For LE:

54 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

m If LE is absent, Ne = 0.

m If LE is one byte:

m A value between 01 and FF will indicate Ne = 1..255.
m A value of 00 will indicate Ne = 256.

If LE is an extended field:

m LC and LE must be in the same format.

m An LE field value between 0001 and FFFF will indicate Ne = 1..65535.
m An LE field value of 0000 will indicate Ne= 65536.

Extended APDU Limits

The Java Card platform supports extended APDUs with some limitations. Because
the platform defines all of its mandatory API in terms of short data length, the
values of LC and LE are limited to short positive values. That is, LC and LE have a
range of 0..32,767. Lengths of 32,768 and beyond are not supported by the Java Card
platform at this time.

javacardx. framework.ExtendedLength
Interface

Not all Java Card applets can handle extended APDUs. Legacy applets should never
encounter an extended APDU in the APDU buffer. Because of this, the Java Card
API has added a tagging interface, javacardx.apdu.ExtendedLength, to signal
that the applet implementing this interface is capable of processing, receiving and
replying to extended APDU commands. The Java Card RE will not deliver extended
APDU commands to applets not implementing this interface (it would throw an
ISOException with reason code IS07816.SW_WRONG_LENGTH in that case), nor
would it allow applets to send reply data lengths greater than 256, if such an
interface is not implemented by the applet.

The APDU buffer in Java Card technology applications will reflect the structure of
the extended APDU as defined in ISO. In T=1, this representation is straightforward
and precise; whereas in T=0, there need to be some adaptations for some cases.

Specifically, a case 2E APDU sent over T=0 transport will not show its extended LE
value in the APDU buffer. Instead, a P3 value of '00' will always be transmitted, and
interpreted as 32,767, if the applet implements ExtendedLength, or 256 if it does

not. The Java Card RE analyzes the APDU type coming into the card and determines

Chapter 5 Using Extended APDU 55

its type based on the rules defined in the ISO 7816-3 specification. Because case 2E
commands look like case 2S5 commands in T=0, the Java Card RE is not able to
distinguish this particular case.

Extensions To javacard. framework.APDU
Class

Because LC in cases 3E and 4E can take a large value, the parameter is sent to the
card as a three-byte quantity, in the format of 00 LCh LC1 starting at
IS07816.0FFSET_LC. Two new API calls have been added to

javacard. framework.APDU so that the applet developer will not be required to
parse the APDU. The API calls allow the applet developer to get the value of LC and
the data offset inside the APDU buffer without having to get them directly from that
buffer, as was necessary before.

These two APIs allow applet developers to write applets without having to worry
about parsing extended length in T=0 and T=1 implementations.

m public short getIncomingLength ()

This API call returns the value of LC as expressed in the APDU, whether it is
extended or not.

m public short getOffsetCdatal()

This API call returns the offset where the first byte of the APDU data segment is
found.

56

Sending and Receiving Extended APDU
Commands

To write an applet that takes advantage of extended length, follow these steps:

1. Implement the javacardx.apdu.ExtendedLength interface in your applet:

Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

import javacard.framework.*;
import javacardx.apdu.ExtendedLength;

public MyApplet extends Applet implements
ExtendedLength {

2. Write your applet and Applet.process(..) method as you would with any
other applets. For consistency, it is advisable that your process(..) code begin
like the one below:

public void process (APDU apdu) {
bytel[] buffer = apdu.getBuffer();

if (apdu.isISOInterindustryCLA()) {
if (this.selectingApplet()) {
return;
} else {
ISOException.throwIt (ISO07816.SW_CLA NOT SUPPORTED) ;

switch (buffer[ISO7816.0FFSET_INS]) {
case CHOICE_1:

return;
case CHOICE 2:

default:
ISOException.throwIt (ISO7816.SW_INS_NOT SUPPORTED) ;
}

3. For cases 3S, 4S, 3E and 4E, write the method to handle incoming data. Do it
relying on API extensions so that your applet properly handles extended, as well
as non-extended, cases.

Chapter 5 Using Extended APDU 57

void receiveData (APDU apdu) {
byte[] buffer = apdu.getBuffer();
short LC = apdu.getIncomingLength();

short recvlLen = apdu.setIncomingAndreceive() ;
short dataOffset = apdu.getOffsetCdatal) ;

while (recvLen > 0) {
[process data in buffer[dataOffset]...]

recvLen = apdu.receiveBytes (dataOffset);
}
// Done
}

4. For case 2S, 2E, write the method handling data output. A method could look
something like this:

void sendData (APDU apdu) {
byte[] buffer = apdu.getBuffer();

short LE = apdu.setOutgoing() ;
short toSend =

if (LE != toSend) {
apdu.setOutgoingLength (toSend) ;

while (toSend > 0) {

[prepare data to send in APDU buffer]

apdu.sendBytes (dataOffset, sentLen);
toSend -= sentLen;

}

// Done

58 Application Programming Notes, Java Card Platform, Version 2.2.2 ¢ March 2006

Index

A

APDU commands, 13
ISO 7816-4 specific, 19

APDU1/0, 23

applet
deletion, 4

applets, 8, 35, 46
deletion, 3
firewall, 18
ISO 7816-4 compliant, 16
Java Card RMI, 29
selection, 9

C

card terminal interaction, 41
CardAccessor objects, 40
client, 37,48

commands

MANAGE CHANNEL CLOSE, 21
MANAGE CHANNEL OPEN, 20

SELECT FILE, 22

D
deletion, 1,3
deselection, 10

E
extended APDU, 53

F
firewall, 18

interface

J

multiselectable, 9

Java Card RMI, 29

L

CardAccessor objects, 40
client program, 31
running applets, 30
security service, 44
shutting down, 39

logical channels, 7

M

management, 19

MANAGE CHANNEL CLOSE, 21
MANAGE CHANNEL OPEN, 20
multiselectable interface, 9

N

non-multiselectable applets, 8

(o)

object deletion, 1

P

package deletion, 3

R
removable applets, 4
removable packages, 3

S

security service, for Java Card RMI, 44
security, for Java Card RMI, 42
SELECT FILE, 22

selection, 9

stubs, 29
generating, 41

60 Application Programming Notes, Java Card Platform, Version 2.2.2 « March 2006

	Application Programming Notes
	Contents
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	Typographic Conventions
	Accessing Sun Documentation Online
	Sun Welcomes Your Comments

	Using Object, Package and Applet Deletion
	Object Deletion Mechanism
	Requesting the Object Deletion Mechanism
	Object Deletion Mechanism Usage Guidelines

	Package and Applet Deletion
	Developing Removable Packages
	Writing Removable Applets

	Working with Logical Channels
	Applets and Logical Channels
	Non-MultiSelectable Applets
	Interoperability

	Understanding the MultiSelectable Interface
	Selection for MultiSelectable Applets
	Deselection for MultiSelectable Applets

	Writing Applets For Concurrent Logical Channels
	MultiSelectable Applet Example
	Writing ISO 7816-4:2005 Compliant Applets
	Applet Firewall Operation Requirements
	ISO 7816-4:2005 Specific APDU Commands for Logical Channel Management

	Working with APDU I/O
	The APDU I/O API
	APDU I/O Classes and Interfaces
	Exceptions

	Two-interface Card Simulation
	Examples of Use
	To Connect To a Simulator
	To Establish a T=0 Connection To a Card
	To Establish a Connection To a PC/SC- Compatible Card Reader
	To Power Up And Power Down the Card
	To Exchange APDUs
	To Print the APDU

	Developing RMI Applications for the Java Card Platform
	Developing an RMI Applet for the Java Card Platform
	Generating Stubs
	Running a Java Card RMI Applet
	Running the Java Card RMI Client Program

	Basic Example
	Main Program
	Building an Applet
	Writing a Client
	Card Terminal Interaction

	Adding Security
	Implementing a Security Service
	Building an Applet
	Writing a Client

	Using Extended APDU
	Extended APDU Nominal Cases
	Extended APDU Format
	Extended APDU Limits
	javacardx.framework.ExtendedLength Interface
	Extensions To javacard.framework.APDU Class

	Sending and Receiving Extended APDU Commands

	Index

