
Prado v3.0 Quick Start Tutorial 1

Qiang Xue, Wei Zhuo

May 1, 2006

1Copyright 2005-2006. All Rights Reserved.

Contents

Contents i

Preface xi

License xiii

1 Getting Started 1

1.1 Welcome to the PRADO QuickStart Tutorial . 1

1.2 What is PRADO? . 1

1.2.1 Why PRADO? . 2

1.2.2 What Is PRADO Best For? . 3

1.2.3 How Is PRADO Compared with Other Frameworks? 4

1.2.4 History of PRADO . 4

1.3 Installing PRADO . 5

1.4 My First PRADO Application . 5

1.5 Upgrading from v2.x and v1.x . 8

1.5.1 Component Definition . 8

1.5.2 Application Controller . 9

i

1.5.3 Pages . 9

1.5.4 Control Relationship . 9

1.5.5 Template Syntax . 9

1.5.6 Theme Syntax . 10

2 Fundamentals 11

2.1 Architecture . 11

2.2 Components . 11

2.2.1 Component Properties . 11

2.2.2 Component Events . 13

2.2.3 Namespaces . 14

2.2.4 Component Instantiation . 15

2.3 Controls . 16

2.3.1 Control Tree . 16

2.3.2 Control Identification . 16

2.3.3 Naming Containers . 17

2.3.4 ViewState and ControlState . 17

2.4 Pages . 18

2.4.1 PostBack . 18

2.4.2 Page Lifecycles . 18

2.5 Modules . 19

2.5.1 Request Module . 19

2.5.2 Response Module . 19

2.5.3 Session Module . 20

ii

2.5.4 Error Handler Module . 20

2.5.5 Custom Modules . 20

2.6 Services . 20

2.6.1 Page Service . 21

2.7 Applications . 22

2.7.1 Directory Organization . 22

2.7.2 Application Deployment . 23

2.7.3 Application Lifecycles . 23

2.8 Sample: Hangman Game . 23

3 Configurations 29

3.1 Configuration Overview . 29

3.2 Templates: Part I . 29

3.2.1 Component Tags . 30

3.2.2 Template Control Tags . 31

3.2.3 Comment Tags . 32

3.3 Templates: Part II . 32

3.3.1 Dynamic Content Tags . 32

3.4 Templates: Part III . 35

3.4.1 Dynamic Property Tags . 35

3.5 Application Configurations . 37

3.6 Page Configurations . 39

4 Control Reference : Standard Controls 41

iii

4.1 TButton . 41

4.2 TCheckBox . 42

4.3 TColorPicker . 42

4.4 TDatePicker . 42

4.5 TExpression . 44

4.6 TFileUpload . 44

4.7 THead . 45

4.8 THiddenField . 45

4.9 THtmlArea . 46

4.10 THyperLink . 47

4.11 TImageButton . 47

4.12 TImageMap . 47

4.13 TImage . 48

4.14 TInlineFrame . 48

4.15 TJavascriptLogger . 49

4.16 TLabel . 50

4.17 TLinkButton . 50

4.18 TLiteral . 50

4.19 TMultiView . 51

4.20 TPanel . 52

4.21 TPlaceHolder . 52

4.22 TRadioButton . 52

4.23 TSafeHtml . 53

iv

4.24 TStatements . 53

4.25 TTable . 54

4.26 TTextBox . 55

4.27 TTextHighlighter . 55

4.28 TWizard . 56

4.28.1 Overview . 56

4.28.2 Using TWizard . 57

5 Control Reference : List Controls 61

5.1 List Controls . 61

5.1.1 TListBox . 62

5.1.2 TDropDownList . 63

5.1.3 TCheckBoxList . 63

5.1.4 TRadioButtonList . 63

5.1.5 TBulletedList . 63

6 Control Reference : Validation Controls 65

6.1 Validation Controls . 65

6.1.1 TRequiredFieldValidator . 66

6.1.2 TRegularExpressionValidator . 66

6.1.3 TCompareValidator . 67

6.1.4 TDataTypeValidator . 68

6.1.5 TRangeValidator . 68

6.1.6 TCustomValidator . 69

v

6.1.7 TValidationSummary . 70

7 Control Reference : Data Controls 71

7.1 Data Controls . 71

7.2 TDataList . 71

7.3 TDataGrid . 73

7.3.1 Columns . 74

7.3.2 Item Styles . 74

7.3.3 Events . 75

7.3.4 Using TDataGrid . 75

7.3.5 Interacting with TDataGrid . 77

7.3.6 Sorting . 77

7.3.7 Paging . 78

7.3.8 Extending TDataGrid . 79

7.4 TRepeater . 80

8 Write New Controls 83

8.1 Writing New Controls . 83

8.1.1 Composition of Existing Controls . 83

8.1.2 Extending Existing Controls . 86

9 Advanced Topics 89

9.1 Authentication and Authorization . 89

9.1.1 How PRADO Auth Framework Works . 89

9.1.2 Using PRADO Auth Framework . 90

vi

9.1.3 Using TUserManager . 92

9.2 Security . 92

9.2.1 Viewstate Protection . 92

9.2.2 Cross Site Scripting Prevention . 93

9.2.3 Cookie Attack Prevention . 93

9.3 Assets . 94

9.3.1 Asset Publishing . 95

9.3.2 Customization . 95

9.3.3 Performance . 96

9.3.4 A Toggle Button Example . 96

9.4 Master and Content . 97

9.5 Themes and Skins . 99

9.5.1 Introduction . 99

9.5.2 Understanding Themes . 99

9.5.3 Using Themes . 100

9.5.4 Theme Storage . 100

9.5.5 Creating Themes . 101

9.6 Persistent State . 101

9.6.1 View State . 101

9.6.2 Control State . 102

9.6.3 Application State . 102

9.6.4 Session State . 102

9.7 Logging . 103

vii

9.7.1 Using Logging Functions . 103

9.7.2 Message Routing . 103

9.7.3 Message Filtering . 104

9.8 Internationalization (I18N) and Localization (L10N) 105

9.8.1 Separate culture/locale sensitive data . 105

9.8.2 Configuration . 106

9.8.3 What to do with messages.xml? . 107

9.8.4 Setting and Changing Culture . 107

9.8.5 Localizing your Prado application . 108

9.8.6 Using localize function to translate text within PHP 108

9.8.7 Compound Messages . 109

9.9 I18N Components . 110

9.9.1 TTranslate . 110

9.9.2 TDateFormat . 110

9.9.3 TNumberFormat . 113

9.9.4 TTranslateParameter . 114

9.9.5 TChoiceFormat . 114

9.10 Error Handling and Reporting . 115

9.10.1 Exception Classes . 115

9.10.2 Raising Exceptions . 116

9.10.3 Error Capturing and Reporting . 117

9.10.4 Customizing Error Display . 117

9.11 Performance Tuning . 118

viii

9.11.1 Caching . 118

9.11.2 Using pradolite.php . 119

9.11.3 Changing Application Mode . 119

9.11.4 Reducing Page Size . 120

9.11.5 Other Techniques . 121

ix

x

Preface

Prado quick start doc

xi

xii

License

PRADO is free software released under the terms of the following BSD license.
Copyright 2004-2006, PradoSoft (http://www.pradosoft.com)
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of the developer nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT

OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

xiii

Chapter 1

Getting Started

1.1 Welcome to the PRADO QuickStart Tutorial

This QuickStart tutorial is provided to help you quickly start building your own Web applications
based on PRADO version 3.0.

You may refer to the following resources if you find this tutorial does not fulfill all your needs.

• PRADO API Documentation

• PRADO Forum

• PRADO Wiki

• PRADO Trac

1.2 What is PRADO?

PRADO is a component-based and event-driven programming framework for developing Web ap-
plications in PHP 5. PRADO stands for PHP Rapid Application Development Object-oriented.

A primary goal of PRADO is to enable maximum reusability in Web programming. By reusability,
we mean not only reusing one’s own code, but also reusing other people’s code in an easy way. The

1

http://www.pradosoft.com/docs/manual/
http://www.pradosoft.com/forum/
http://www.pradosoft.com/wiki/
http://trac.pradosoft.com/wiki/

Chapter 1. Getting Started

latter is more important as it saves the effort of reinventing the wheels and may cut off development
time dramatically. The introduction of the concept of component is for this purpose.

To achieve the above goal, PRADO stipulates a protocol of writing and using components to
construct Web applications. A component is a software unit that is self-contained and can be
reused with trivial customization. New components can be created by simple composition of
existing components.

To facilitate interacting with components, PRADO implements an event-driven programming
paradigm that allows delegation of extensible behavior to components. End-user activities, such as
clicking on a submit button, are captured as server events. Methods or functions may be attached
to these events so that when the events happen, they are invoked automatically to respond to the
events. Compared with the traditional Web programming in which developers have to deal with
the raw POST or GET variables, event-driven programming helps developers better focus on the
necessary logic and reduces significantly the low-level repetitive coding.

In summary, developing a PRADO Web application mainly involves instantiating prebuilt com-
ponent types, configuring them by setting their properties, responding to their events by writing
handler functions, and composing them into pages for the application. It is very similar to RAD
toolkits, such as Borland Delphi and Microsoft Visual Basic, that are used to develop desktop GUI
applications.

1.2.1 Why PRADO?

PRADO is mostly quoted as a unique framework. In fact, it is so unique that it may turn your
boring PHP programming into a fun task. The following list is a short summary of the main
features of PRADO,

• Reusability - Code following the PRADO component protocol are highly reusable. Everything
in PRADO is a reusable component.

• Event-driven programming - End-user activities, such as clicking on a submit button, are
captured as server events so that developers have better focus on dealing with user interac-
tions.

• Team integration - Presentation and logic are separately stored. PRADO applications are
themable.

2

1.2. What is PRADO?

• Powerful Web controls - PRADO comes with a set of powerful components dealing with Web
user interfaces. Highly interactive Web pages can be created with a few lines of code. For
example, using the datagrid component, one can quickly create a page presenting a data
table which allows paging, sorting, editing, and deleting rows of the data.

• I18N and L10N support - PRADO includes complete support for building applications with
multiple languages and locales.

• Seamless Ajax support - PRADO provides a set of Ajax-enabled components that can be
easily used (to be available in v3.1).

• XHTML compliance - Web pages generated by PRADO are XHTML-compliant.

• Accommodation of existing work - PRADO is a generic framework with focus on the pre-
sentational layer. It does not exclude developers from using most existing class libraries or
toolkits. For example, one can AdoDB or Creole to deal with DB in his PRADO application.

• Other features - Powerful error/exception handling and message logging; generic caching and
selective output caching; customizable and localizable error handling; extensible authentica-
tion and authorization; security measures such as cross-site script (CSS) prevention, cookie
protection, etc.

1.2.2 What Is PRADO Best For?

PRADO is best suitable for creating Web front-ends that are highly user-interactive and require
small to medium traffic. It can be used to develop systems as simple as a blog system to systems
as complex as a content management system (CMS) or a complete e-commerce solution. PRADO
can help you cut your development time significantly.

PRADO does not exclude other back-end solutions such as most DB abstraction layers. In fact,
they can be used like what you usually do with traditional PHP programming.

Without caching techniques, PRADO may not be suitable for developing extremely high-traffic
Web applications, such as popular portals, forums, etc. In these applications, every niche of
potential performance gain must be exploited and server caching (e.g. Zend optimizer) is almost a
must. PRADO implements a generic cache technique and enables selective caching of part of Web
contents.

3

Chapter 1. Getting Started

1.2.3 How Is PRADO Compared with Other Frameworks?

PRADO is described as a unique framework. Its uniqueness mainly lies in the component-based
and event-driven programming paradigm that it tries to promote. Although this programming
paradigm is not new in desktop application programming and not new in a few Web programming
languages, PRADO is perhaps the first PHP framework enabling it.

Most PHP frameworks are trying to establish a loose standard of organizing PHP programming,
most preferably the MVC (model-view-controller) model. It is difficult to compare PRADO with
these frameworks because they have different focuses. What we can say is, PRADO is more like a
high-level language built upon PHP, while the MVC frameworks stand for the best programming
practices. Both aim to help developers to rapidly complete Web application development. The
advantage of PRADO is its rich set of prebuilt powerful components and extreme reusability of the
PRADO code, while the advantage of the MVC frameworks is the complete separation of model,
view and controller, which greatly facilitates team integration.

1.2.4 History of PRADO

The very original inspiration of PRADO came from Apache Tapestry. During the design and
implementation, I borrowed many ideas from Borland Delphi and Microsoft ASP.NET. The first
version of PRADO came out in June 2004 and was written in PHP 4. Driven by the Zend PHP 5
coding contest, I rewrote PRADO in PHP 5, which proved to be a wise move, thanks to the new
object model provided by PHP 5. PRADO won the grand prize in the Zend contest, earning the
highest votes from both the public and the judges’ panel.

In August 2004, PRADO started to be hosted on SourceForge as an open source project. Soon
after, the project site xisc.com was announced to public. With the fantastic support of PRADO
developer team and PRADO users, PRADO evolved to version 2.0 in mid 2005. In this version,
Wei Zhuo contributed to PRADO with the excellent I18N and L10N support.

In May 2005, we decided to completely rewrite the PRADO framework to resolve a few fundamental
issues found in version 2.0 and to catch up with some cool features available in Microsoft ASP.NET
2.0. After nearly a year’s hard work with over 50,000 lines of new code, version 3.0 was finally
made available in April 2006.

Starting from version 3.0, significant efforts are allocated to ensure the quality and stability of
PRADO. If we say PRADO v2.x and v1.x are proof-of-concept work, we can say PRADO 3.x has

4

http://www.xisc.com/

1.3. Installing PRADO

grown up to a project that is suitable for serious business application development.

1.3 Installing PRADO

If you are viewing this page from your own Web server, you are already done with the installation.

The minimum requirement by PRADO is that the Web server support PHP 5. PRADO has been
tested with Apache Web server on Windows and Linux. Highly possibly it may also run on other
platforms with other Web servers, as long as PHP 5 is supported.

Installation of PRADO mainly involves downloading and unpacking.

1. Go to pradosoft.com to grab the latest version of PRADO.

2. Unpack the PRADO release file to a Web-accessible directory.

Your installation of PRADO is done and you can start to play with the demo applications included
in the PRADO release via URL http://web-server-address/prado/demos/. Here we assume
PRADO is unpacked to the prado subdirectory under the DocumentRoot of the Web server.

If you encounter any problems with the demo applications, please use the PRADO requirement
checker script, accessible via http://web-server-address/prado/requirements/index.php, to
check first if your server configuration fulfills the conditions required by PRADO.

1.4 My First PRADO Application

In this section, we guide you through creating your first PRADO application, the famous ”Hello
World” application.

”Hello World” perhaps is the simplest interactive PRADO application that you can create. It
displays to end-users a page with a submit button whose caption is Click Me. After the user
clicks on the button, its caption is changed to Hello World.

There are many approaches that can achieve the above goal. One can submit the page to the
server, examine the POST variable, and generate a new page with the button caption updated.
Or one can simply use JavaScript to update the button caption upon its onclick client event.

5

http://www.pradosoft.com/

Chapter 1. Getting Started

PRADO promotes component-based and event-driven Web programming. The button is repre-
sented by a TButton object. It encapsulates the button caption as the Text property and associates
the user button click action with a server-side OnClick event. To respond to the user clicking on
the button, one simply needs to attach a function to the button’s OnClick event. Within the
function, the button’s Text property is modified as ”Hello World”. The following diagram shows
the above sequence,

Our PRADO application consists of three files, index.php, Home.page and Home.php, which are
organized as follows,

where each directory is explained as follows. Note, the above directory structure can be customized.
For example, one can move the protected directory out of Web directories. You will know how
to do this after you go through this tutorial.

• assets - directory storing published private files. See assets section for more details. This
directory must be writable by the Web server process.

• protected - application base path storing application data and private script files. This
directory should be configured as inaccessible to end-users.

6

1.4. My First PRADO Application

• runtime - application runtime storage path storing application runtime information, such
as application state, cached data, etc. This directory must be writable by the Web server
process.

• pages - base path storing all PRADO pages.

The three files that we need are explained as follows.

• index.php - entry script of the PRADO application. This file is required by all PRADO
applications and is the only script file that is directly accessible by end-users. Content in
index.php mainly consists of the following three lines,

require_once(’path/to/prado.php’); // include the prado script

$application=new TApplication; // create a PRADO application instance

$application->run(); // run the application

• Home.page - template for the default page returned when users do not explicitly specify
the page requested. A template specifies the presentational layout of components. In this
example, we use two components, TForm and TButton, which correspond to the ¡form¿ and
¡input¿ HTML tags, respectively. The template contains the following content,

<html>

<body>

<com:TForm>

<com:TButton Text="Click me" OnClick="buttonClicked" />

</com:TForm>

</body>

</html>

• Home.php - page class for the Home page. It mainly contains the method responding to the
OnClick event of the button.

class Home extends TPage

{

public function buttonClicked($sender,$param)

{

// $sender refers to the button component

$sender->Text="Hello World!";

7

Chapter 1. Getting Started

}

}

The application is now ready and can be accessed via: http://Web-server-address/helloworld/index.php,
assuming helloworld is directly under the Web DocumentRoot. Try to change TButton in Home.page

to TLinkButton and see what happens.

Complete source code of this demo can be found in the PRADO release. You can also try the
online demo.

1.5 Upgrading from v2.x and v1.x

PRADO v3.0 is NOT backward compatible with earlier versions of PRADO.

A good news is, properties and events of most controls remain intact, and the syntax of con-
trol templates remains largely unchanged. Therefore, developers’ knowledge of earlier versions of
PRADO are still applicable in v3.0.

We summarize in the following the most significant changes in v3.0 to help developers upgrade
their v2.x and v1.x PRADO applications more easily, if needed.

1.5.1 Component Definition

Version 3.0 has completely discarded the need of component specification files. It relies more on
conventions for defining component properties and events. In particular, a property is defined by
the existence of a getter method and/or a setter method, while an event is defined by the existence
of an on-method. Property and event names in v3.0 are both case-insensitive. As a consequence,
developers are now required to take care of type conversions when a component property is being
set. For example, the following code is used to define the setter method for the Enabled property
of TControl, which is of boolean type,

public function setEnabled($value)

{

$value=TPropertyValue::ensureBoolean($value);

$this->setViewState(’Enabled’,$value,true);

}

8

http://www.pradosoft.com/demos/helloworld/

1.5. Upgrading from v2.x and v1.x

where TPropertyValue::ensureBoolean() is used to ensure that the input value be a boolean.
This is because when the property is configured in template, a string value is passed to the setter.
In previous versions, PRADO knows the property type based on the component specification files
and does the type conversion for you.

1.5.2 Application Controller

Application controller now implements a modular architecture. Modules can be plugged in and
configured in application specifications. Each module assumes a particular functionality, and they
are coordinated together by the application lifecycle. The concept of v2.x modules is replaced in
v3.0 by page directories. As a result, the format of v3.0 application specification is also different
from earlier versions.

1.5.3 Pages

Pages in v3.0 are organized in directories which may be compared to the module concept in v2.x.
Pages are requested using the path to them. For example, a URL index.php?page=Controls.Samples.Sample1

would be used to request for a page named Sample1 stored under the [BasePath]/Controls/Samples
directory, where [BasePath] refers to the root page path. The file name of a page template must be
ended with .page, mainly to differentiate page templates from non-page control templates whose
file names must be ended with .tpl.

1.5.4 Control Relationship

Version 3.0 redefines the relationships between controls. In particular, the parent-child relation-
ship now refers to the enclosure relationship between controls’ presentation. And a new naming-
container relationship is introduced to help better manage control IDs. For more details, see the
controls section.

1.5.5 Template Syntax

The syntax of control templates in v3.0 remains similar to those in earlier versions, with many
enhancements. A major change is about the databinding expression. In v3.0, this is done by the
following,

9

Chapter 1. Getting Started

<com:MyComponent PropertyName=<%# PHP expression %> .../>

Expression and statement tags are also changed similarly. For more details, see the template
definition section.

1.5.6 Theme Syntax

Themes in v3.0 are defined like control templates with a few restrictions.

10

Chapter 2

Fundamentals

2.1 Architecture

PRADO is primarily a presentational framework, although it is not limited to be so. The framework
focuses on making Web programming, which deals most of the time with user interactions, to be
component-based and event-driven so that developers can be more productive. The following class
tree depicts some of the major classes provided by PRADO,

When a PRADO application is processing a page request, its static object diagram can be shown
as follows,

2.2 Components

A component is an instance of TComponent or its child class. The base class TComponent implements
the mechanism of component properties and events.

2.2.1 Component Properties

A component property can be viewed as a public variable describing a specific aspect of the
component, such as the background color, the font size, etc. A property is defined by the existence

11

Chapter 2. Fundamentals

of a getter and/or a setter method in the component class. For example, in TControl, we define
its ID property using the following getter and setter methods,

class TControl extends TComponent {

public function getID() {

...

}

public function setID($value) {

...

}

}

12

2.2. Components

To get or set the ID property, do as follows, just like working with a variable,

$id = $component->ID;

$component->ID = $id;

This is equivalent to the following,

$id = $component->getID();

$component->setID($id);

A property is read-only if it has a getter method but no setter method. Since PHP method names
are case-insensitive, property names are also case-insensitive. A component class inherits all its
ancestor classes’ properties.

Subproperties

A subproperty is a property of some object-typed property. For example, TWebControl has a Font

property which is of TFont type. Then the Name property of Font is referred to as a subproperty
(with respect to TWebControl).

To get or set the Name subproperty, use the following method,

$name = $component->getSubProperty(’Font.Name’);

$component->setSubProperty(’Font.Name’, $name);

This is equivalent to the following,

$name = $component->getFont()->getName();

$component->getFont()->setName($name);

2.2.2 Component Events

Component events are special properties that take method names as their values. Attaching
(setting) a method to an event will hook up the method to the places at which the event is raised.
Therefore, the behavior of a component can be modified in a way that may not be foreseen during
the development of the component.

13

Chapter 2. Fundamentals

A component event is defined by the existence of a method whose name starts with the word on.
The event name is the method name and is thus case-insensitve. For example, in TButton, we have

class TButton extends TWebControl {

public function onClick($param) {

...

}

}

This defines an event named OnClick, and a handler can be attached to the event using one of the
following ways,

$button->OnClick = $callback;

$button->OnClick->add($callback);

$button->OnClick[] = $callback;

$button->attachEventHandler(’OnClick’ , $callback);

where $callback refers to a valid PHP callback (e.g. a function name, a class method array($object,’method’),
etc.)

2.2.3 Namespaces

A namespace refers to a logical grouping of some class names so that they can be differentiated
from other class names even if their names are the same. Since PHP does not support namespace
intrinsically, you cannot create instances of two classes who have the same name but with different
definitions. To differentiate from user defined classes, all PRADO classes are prefixed with a letter
’T’ (meaning ’Type’). Users are advised not to name their classes like this. Instead, they may
prefix their class names with any other letter(s).

A namespace in PRADO is considered as a directory containing one or several class files. A class
may be specified without ambiguity using such a namespace followed by the class name. Each
namespace in PRADO is specified in the following format,

PathAlias.Dir1.Dir2

where PathAlias is an alias of some directory, while Dir1 and Dir2 are subdirectories under that di-
rectory. A class named MyClass defined under Dir2 may now be fully qualified as PathAlias.Dir1.Dir2.MyClass.

14

2.2. Components

To use a namespace in code, do as follows,

Prado::using(’PathAlias.Dir1.Dir2.*’);

which appends the directory referred to by PathAlias.Dir1.Dir2 into PHP include path so that
classes defined under that directory may be instantiated without the namespace prefix. You may
also include an individual class definition by

Prado::using(’PathAlias.Dir1.Dir2.MyClass’);

which will include the class file if MyClass is not defined.

For more details about defining path aliases, see application configuration section.

2.2.4 Component Instantiation

Component instantiation means creating instances of component classes. There are two types of
component instantation: static instantiation and dynamic instantiation. The created components
are called static components and dynamic components, respectively.

Dynamic Component Instantiation

Dynamic component instantiation means creating component instances in PHP code. It is the
same as the commonly referred object creation in PHP. A component can be dynamically created
using one of the following two methods in PHP,

$component = new ComponentClassName;

$component = Prado::createComponent(’ComponentType’);

where ComponentType refers to a class name or a type name in namespace format (e.g. System.Web.UI.TControl).
The second approach is introduced to compensate for the lack of namespace support in PHP.

Static Component Instantiation

Static component instantiation is about creating components via configurations. The actual cre-
ation work is done by the PRADO framework. For example, in an application configuration, one

15

Chapter 2. Fundamentals

can configure a module to be loaded when the application runs. The module is thus a static
component created by the framework. Static component instantiation is more commonly used in
templates. Every component tag in a template specifies a component that will be automatically
created by the framework when the template is loaded. For example, in a page template, the
following tag will lead to the creation of a TButton component on the page,

<com:TButton Text="Register" />

2.3 Controls

A control is an instance of class TControl or its subclass. A control is a component defined in
addition with user interface. The base class TControl defines the parent-child relationship among
controls which reflects the containment relationship among user interface elements.

2.3.1 Control Tree

Controls are related to each other via parent-child relationship. Each parent control can have one or
several child controls. A parent control is in charge of the state transition of its child controls. The
rendering result of the child controls are usually used to compose the parent control’s presentation.
The parent-child relationship brings together controls into a control tree. A page is at the root of
the tree, whose presentation is returned to the end-users.

The parent-child relationship is usually established by the framework via templates. In code, you
may explicitly specify a control as a child of another using one of the following methods,

$parent->Controls->add($child);

$parent->Controls[]=$child;

where the property Controls refers to the child control collection of the parent.

2.3.2 Control Identification

Each control has an ID property that can be uniquely identify itself among its sibling controls.
In addition, each control has a UniqueID and a ClientID which can be used to globally identify

16

2.3. Controls

the control in the tree that the control resides in. UniqueID and ClientID are very similar. The
former is used by the framework to determine the location of the corresponding control in the tree,
while the latter is mainly used on the client side as HTML tag IDs. In general, you should not
rely on the explicit format of UniqueID or ClientID.

2.3.3 Naming Containers

Each control has a naming container which is a control creating a unique namespace for differ-
entiating between controls with the same ID. For example, a TRepeater control creates multiple
items each having child controls with the same IDs. To differentiate these child controls, each
item serves as a naming container. Therefore, a child control may be uniquely identified using its
naming container’s ID together with its own ID. As you may already have understood, UniqueID
and ClientID rely on the naming containers.

A control can serve as a naming container if it implements the INamingContainer interface.

2.3.4 ViewState and ControlState

HTTP is a stateless protocol, meaning it does not provide functionality to support continuing
interaction between a user and a server. Each request is considered as discrete and independent
of each other. A Web application, however, often needs to know what a user has done in previous
requests. People thus introduce sessions to help remember such state information.

PRADO borrows the viewstate and controlstate concept from Microsoft ASP.NET to provides
additional stateful programming mechanism. A value storing in viewstate or controlstate may be
available to the next requests if the new requests are form submissions (called postback) to the
same page by the same user. The difference between viewstate and controlstate is that the former
can be disabled while the latter cannot.

Viewstate and controlstate are implemented in TControl. They are commonly used to define
various properties of controls. To save and retrieve values from viewstate or controlstate, use
following methods,

$this->getViewState(’Name’,$defaultValue);

$this->setViewState(’Name’,$value,$defaultValue);

$this->getControlState(’Name’,$defaultValue);

17

Chapter 2. Fundamentals

$this->setControlState(’Name’,$value,$defaultValue);

where $this refers to the control instance, Name refers to a key identifying the persistent value,
$defaultValue is optional. When retrieving values from viewstate or controlstate, if the corre-
sponding key does not exist, the default value will be returned.

2.4 Pages

Pages are top-most controls that have no parent. The presentation of pages are directly displayed
to end-users. Users access pages by sending page service requests.

Each page must have a template file. The file name suffix must be .page. The file name (without
suffix) is the page name. PRADO will try to locate a page class file under the directory containing
the page template file. Such a page class file must have the same file name (suffixed with .php) as
the template file. If the class file is not found, the page will take class TPage.

2.4.1 PostBack

A form submission is called postback if the submission is made to the page containing the form.
Postback can be considered an event happened on the client side, raised by the user. PRADO
will try to identify which control on the server side is responsible for a postback event. If one is
determined, for example, a TButton, we call it the postback event sender which will translate the
postback event into some specific server-side event (e.g. Click and Command events for TButton).

2.4.2 Page Lifecycles

Understanding the page lifecycles is crucial to grasp PRADO programming. Page lifecycles refer
to the state transitions of a page when serving this page to end-users. They can be depicted in the
following statechart,

18

2.5. Modules

2.5 Modules

A module is an instance of a class implementing the IModule interface. A module is commonly
designed to provide specific functionality that may be plugged into a PRADO application and
shared by all components in the application.

PRADO uses configurations to specify whether to load a module, load what kind of modules,
and how to initialize the loaded modules. Developers may replace the core modules with their
own implementations via application configuration, or they may write new modules to provide
additional functionalities. For example, a module may be developed to provide common database
logic for one or several pages. For more details, please see the configurations.

There are three core modules that are loaded by default whenever an application runs. They are
request module, response module, and error handler module. In addition, session module is loaded
when it is used in the application. PRADO provides default implementation for all these modules.
Custom modules may be configured or developed to override or supplement these core modules.

2.5.1 Request Module

Request module represents provides storage and access scheme for user request sent via HTTP. User
request data comes from several sources, including URL, post data, session data, cookie data, etc.
These data can all be accessed via the request module. By default, PRADO uses THttpRequest

as request module. The request module can be accessed via the Request property of application
and controls.

2.5.2 Response Module

Response module implements the mechanism for sending output to client users. Response module
may be configured to control how output are cached on the client side. It may also be used to send
cookies back to the client side. By default, PRADO uses THttpResponse as response module. The
response module can be accessed via the Response property of application and controls.

19

Chapter 2. Fundamentals

2.5.3 Session Module

Session module encapsulates the functionalities related with user session handling. Session module
is automatically loaded when an application uses session. By default, PRADO uses THttpSession
as session module, which is a simple wrapper of the session functions provided by PHP. The session
module can be accessed via the Session property of application and controls.

2.5.4 Error Handler Module

Error handler module is used to capture and process all error conditions in an application. PRADO
uses TErrorHandler as error handler module. It captures all PHP warnings, notices and exceptions,
and displays in an appropriate form to end-users. The error handler module can be accessed via
the ErrorHandler property of the application instance.

2.5.5 Custom Modules

PRADO is released with a few more modules besides the core ones. They include caching modules
(TSqliteCache and TMemCache), user management module (TUserManager), authentication and
authorization module (TAuthManager), etc.

When TPageService is requested, it also loads modules specific for page service, including asset
manager (TAssetManager), template manager (TTemplateManager), theme/skin manager (TThemeManager).

Custom modules and core modules are all configurable via configurations.

2.6 Services

A service is an instance of a class implementing the IService interface. Each kind of service
processes a specific type of user requests. For example, the page service responds to users’ requests
for PRADO pages.

A service is uniquely identified by its ID property. By default when THttpRequest is used as the
request module, GET variable names are used to identify which service a user is requesting. If a
GET variable name is equal to some service ID, the request is considered for that service, and the
value of the GET variable is passed as the service parameter. For page service, the name of the GET

20

2.6. Services

variable must be page. For example, the following URL requests for the Fundamentals.Services

page,

http://hostname/index.php?page=Fundamentals.Services

Developers may implement additional services for their applications. To make a service available,
configure it in application configurations.

2.6.1 Page Service

PRADO implements TPageService to process users’ page requests. Pages are stored under a
directory specified by the BasePath property of the page service. The property defaults to pages

directory under the application base path. You may change this default by configuring the service
in the application configuration.

Pages may be organized into subdirectories under the BasePath. In each directory, there may be a
page configuration file named config.xml, which contains configurations effective only when a page
under that directory or a sub-directory is requested. For more details, see the page configuration
section.

Service parameter for the page service refers to the page being requested. A parameter like
Fundamentals.Services refers to the Services page under the <BasePath>/Fundamentals di-
rectory. If such a parameter is absent in a request, a default page named Home is assumed. Using
THttpRequest as the request module (default), the following URLs will request for Home, About
and Register pages, respectively,

http://hostname/index.php

http://hostname/index.php?page=About

http://hostname/index.php?page=Users.Register

where the first example takes advantage of the fact that the page service is the default service and
Home is the default page.

21

Chapter 2. Fundamentals

2.7 Applications

An application is an instance of TApplication or its derived class. It manages modules that
provide different functionalities and are loaded when needed. It provides services to end-users. It
is the central place to store various parameters used in an application. In a PRADO application,
the application instance is the only object that is globally accessible via Prado::getApplication()
function call.

Applications are configured via application configurations. They are usually created in entry scripts
like the following,

require_once(’/path/to/prado.php’);

$application = new TApplication;

$application->run();

where the method run() starts the application to handle user requests.

2.7.1 Directory Organization

A minimal PRADO application contains two files: an entry file and a page template file. They
must be organized as follows,

• wwwroot - Web document root or sub-directory.

• index.php - entry script of the PRADO application.

• assets - directory storing published private files. See assets section.

• protected - application base path storing application data and private script files. This
directory should be configured inaccessible to Web-inaccessible, or it may be located outside
of Web directories.

• runtime - application runtime storage path. This directory is used by PRADO to store
application runtime information, such as application state, cached data, etc.

• pages - base path storing all PRADO pages. See services section.

• Home.page - default page returned when users do not explicitly specify the page requested.
This is a page template file. The file name without suffix is the page name. The page class
is TPage. If there is also a class file Home.php, the page class becomes Home.

22

2.8. Sample: Hangman Game

A product PRADO application usually needs more files. It may include an application configura-
tion file named application.xml under the application base path protected. The pages may be
organized in directories, some of which may contain page configuration files named config.xml.
Fore more details, please see configurations section.

2.7.2 Application Deployment

Deploying a PRADO application mainly involves copying directories. For example, to deploy the
above minimal application to another server, follow the following steps,

1. Copy the content under wwwroot to a Web-accessible directory on the new server.

2. Modify the entry script file index.php so that it includes correctly the prado.php file.

3. Remove all content under assets and runtime directories and make sure both directories
are writable by the Web server process.

2.7.3 Application Lifecycles

Like page lifecycles, an application also has lifecycles. Application modules can register for the
lifecycle events. When the application reaches a particular lifecycle and raises the corresponding
event, the registered module methods are invoked automatically. Modules included in the PRADO
release, such as TAuthManager, are using this way to accomplish their goals.

The application lifecycles can be depicted as follows,

2.8 Sample: Hangman Game

Having seen the simple ”Hello World” application, we now build a more complex application called
”Hangman Game”. In this game, the player is asked to guess a word, a letter at a time. If he
guesses a letter right, the letter will be shown in the word. The player can continue to guess as
long as the number of his misses is within a prespecified bound. The player wins the game if he
finds out the word within the miss bound, or he loses.

To facilitate the building of this game, we show the state transition diagram of the gaming process
in the following,

23

Chapter 2. Fundamentals

To be continued...

Fundamentals.Samples.Hangman.Home Demo

24

http://www.pradosoft.com/demos/quickstart/index.php?page=Fundamentals.Samples.Hangman.Home

2.8. Sample: Hangman Game

25

Chapter 2. Fundamentals

26

2.8. Sample: Hangman Game

27

Chapter 2. Fundamentals

28

Chapter 3

Configurations

3.1 Configuration Overview

PRADO uses configurations to glue together components into pages and applications. There are
application configurations, page configurations, and templates.

Application and page configurations are optional if default values are used. Templates are mainly
used by pages and template controls. They are optional, too.

3.2 Templates: Part I

Templates are used to specify the presentational layout of controls. A template can contain static
text, components, or controls that contribute to the ultimate presentation of the associated con-
trol. By default, an instance of TTemplateControl or its subclass may automatically load and
instantiate a template from a file whose name is the same as the control class name. For page
templates, the file name suffix must be .page; for other regular template controls, the suffix is
.tpl.

The template format is like HTML, with a few PRADO-specifc tags, including component tags,
template control tags, comment tags, dynamic content tags, and dynamic property tags. .

29

Chapter 3. Configurations

3.2.1 Component Tags

A component tag specifies a component as part of the body content of the template control. If the
component is a control, it usually will become a child or grand child of the template control, and
its rendering result will be inserted at the place where it is appearing in the template.

The format of a component tag is as follows,

<com:ComponentType PropertyName="PropertyValue" ... EventName="EventHandler" ...>

body content

</com:ComponentType>

ComponentType can be either the class name or the dotted type name (e.g. System.Web.UI.TControl)
of the component. PropertyName and EventName are both case-insensitive. PropertyName can be
a property or subproperty name (e.g. Font.Name). Note, PropertyValue will be HTML-decoded
when assigned to the corresponding property. Content enclosed between the opening and closing
component tag are normally treated the body of the component.

It is required that component tags nest properly with each other and an opening component tag
be paired with a closing tag, similar to that in XML.

The following template shows a component tag specifying the Text property and OnClick event
of a button control,

<com:TButton Text="Register" OnClick="registerUser" />

Note, property names and event names are all case-insensitive, while component type names are
case-sensitive. Event names always begin with On.

Also note, initial values for properties whose name ends with Template are specially processed. In
particular, the initial values are parsed as TTemplate objects. The ItemTemplate property of the
TRepeater control is such an example.

To deal conveniently with properties taking take big trunk of initial data, the following property
initialization tag is introduced,

<prop:PropertyName>

PropertyValue

</prop:PropertyName>

30

3.2. Templates: Part I

It is equivalent to ...PropertyName="PropertyValue"... in every aspect. Property initialization
tags must be directly enclosed between the corresponding opening and closing component tag.

Component IDs

When specified in templates, component ID property has special meaning in addition to its normal
property definition. A component tag specified with an ID value in template will register the
corresponding component to the template owner control. The component can thus be directly
accessed from the template control with its ID value. For example, in Home page’s template, the
following component tag

<com:TTextBox ID="TextBox" Text="First Name" />

makes it possible to get the textbox object in code using $page->TextBox.

3.2.2 Template Control Tags

A template control tag is used to configure the initial property values of the control owning the
template. Its format is as follows,

<%@ PropertyName="PropertyValue" ... %>

Like in component tags, PropertyName is case-insensitive and can be a property or subproperty
name.

Initial values specified via the template control tag are assigned to the corresponding properties
when the template control is being constructed. Therefore, you may override these property values
in a later stage, such as the Init stage of the control.

Template control tag is optional in a template. Each template can contain at most one template
control tag. You can place the template control tag anywhere in the template. It is recommended
that you place it at the beginning of the template for better visibility.

31

Chapter 3. Configurations

3.2.3 Comment Tags

Comment tags are used to put comments in the template or the ultimate rendering result. There
are two types of comment tags. One is like that in HTML and will be displayed to the end-users.
The other only appear in a template and will be stripped out when the template is instantiated
and displayed to the end-users. The format of these two comment tags is as follows,

<!--

Comments VISIBLE to end-users

-->

<!--

Comments INVISIBLE to end-users

--!>

Note, template comments (by ¡!– ... –!¿) cannot appear in a property value.

3.3 Templates: Part II

3.3.1 Dynamic Content Tags

Dynamic content tags are introduced as shortcuts to some commonly used component tags. These
tags are mainly used to render contents resulted from evaluating some PHP expressions or state-
ments. They include expression tags, statement tags, databind tags, parameter tags, asset tags
and localization tags.

Expression Tags

An expression tag represents a PHP expression that is evaluated when the template control is in
PreRender stage. The expression evaluation result is inserted at the place where the tag resides in
the template. The context (namely $this) of the expression is the control owning the template.

The format of an expression tag is as follows,

<%= PhpExpression %>

32

3.3. Templates: Part II

For example, the following expression tag will display the current page title at the place,

<%= $this->Title %>

Statement Tags

Statement tags are similar to expression tags, except that statement tags contain PHP statements
rather than expressions. The output of the PHP statements (using for example echo or print in
PHP) are displayed at the place where the statement tag resides in the template. The context
(namely $this) of the statements is the control owning the template. The format of statement
tags is as follows,

<%%

PHP Statements

%>

The following example displays the current time in Dutch at the place,

<%%

setlocale(LC_ALL, ’nl_NL’);

echo strftime("%A %e %B %Y",time());

%>

Databind Tags

Databind tags are similar to expression tags, except that the expressions are evaluated only when
a dataBind() call is invoked on the controls representing the databind tags. The context (namely
$this) of a databind expression is the control owning the template. The format of databind tags
is as follows,

<%# PhpExpression %>

33

Chapter 3. Configurations

Parameter Tags

Parameter tags are used to insert application parameters at the place where they appear in the
template. The format of parameter tags is as follows,

<%$ ParameterName %>

Note, application parameters are usually defined in application configurations or page directory
configurations. The parameters are evaluated when the template is instantiated.

Asset Tags

Asset tags are used to publish private files and display the corresponding the URLs. For example,
if you have an image file that is not Web-accessible and you want to make it visible to end-users,
you can use asset tags to publish this file and show the URL to end-users so that they can fetch
the published image.

The format of asset tags is as follows,

<%~ LocalFileName %>

where LocalFileName refers to a file path that is relative to the directory containing the current
template file. The file path can be a single file or a directory. If the latter, the content in the whole
directory will be made accessible by end-users.

BE VERY CAUTIOUS when you are using asset tags as it may expose to end-users files that you
probably do not want them to see.

Localization Tags

Localization tags represent localized texts. They are in the following format,

<%[string]%>

where string will be translated to different languages according to the end-user’s language pref-
erence. Localization tags are in fact shortcuts to the function call Prado::localize(string).

34

3.4. Templates: Part III

3.4 Templates: Part III

3.4.1 Dynamic Property Tags

Dynamic property tags are very similar to dynamic content tags, except that they are applied to
component properties. The purpose of dynamic property tags is to allow more versatile component
property configuration. Note, you are not required to use dynamic property tags because what
can be done using dynamic property tags can also be done in PHP code. However, using dynamic
property tags bring you much more convenience at accomplishing the same tasks. The basic usage
of dynamic property tags is as follows,

<com:ComponentType PropertyName=DynamicPropertyTag ...>

body content

</com:ComponentType>

where you may enclose DynamicPropertyTag within single or double quotes for better readability.

Like dynamic content tags, we have expression tags, databind tags, parameter tags, asset tags and
localization tags. (Note, there is no statement tag here.)

Expression Tags

An expression tag represents a PHP expression that is evaluated when the control is in PreRender

stage. The expression evaluation result is assigned to the corresponding component property. The
format of expression tags is as follows,

<%= PhpExpression %>

In the expression, $this refers to the control owning the template. The following example specifies
a TLabel control whose Text property is initialized as the current page title when the TLabel

control is being constructed,

<com:TLabel Text=<%= $this->Page->Title %> />

35

Chapter 3. Configurations

Databind Tags

Databind tags are similar to expression tags, except that they can only be used with control
properties and the expressions are evaluated only when a dataBind() call is invoked on the controls
represented by the component tags. In the expression, $this refers to the control owning the
template. Databind tags do not apply to all components. They can only be used for controls.

The format of databind tags is as follows,

<%# PhpExpression %>

Parameter Tags

Parameter tags are used to assign application parameter values to the corresponding component
properties. The format of parameter tags is as follows,

<%$ ParameterName %>

Note, application parameters are usually defined in application configurations or page directory
configurations. The parameters are evaluated when the template is instantiated.

Asset Tags

Asset tags are used to publish private files and assign the corresponding the URLs to the component
properties. For example, if you have an image file that is not Web-accessible and you want to make
it visible to end-users, you can use asset tags to publish this file and show the URL to end-users
so that they can fetch the published image. The asset tags are evaluated when the template is
instantiated.

The format of asset tags is as follows,

<%~ LocalFileName %>

where LocalFileName refers to a file path that is relative to the directory containing the current
template file. The file path can be a single file or a directory. If the latter, the content in the whole
directory will be made accessible by end-users.

36

3.5. Application Configurations

BE VERY CAUTIOUS when you are using asset tags as it may expose to end-users files that you
probably do not want them to see.

Localization Tags

Localization tags represent localized texts. They are in the following format,

<%[string]%>

where string will be translated to different languages according to the end-user’s language pref-
erence. The localization tags are evaluated when the template is instantiated. Localization tags
are in fact shortcuts to the function call Prado::localize(string).

3.5 Application Configurations

Application configurations are used to specify the global behavior of an application. They include
specification of path aliases, namespace usages, module and service configurations, and parameters.

Configuration for an application is stored in an XML file named application.xml, which should
be located under the application base path. Its format is shown in the following,

<application PropertyName="PropertyValue" ...>

<paths>

<alias id="AliasID" path="AliasPath" />

<using namespace="Namespace" />

</paths>

<modules>

<module id="ModuleID" class="ModuleClass" PropertyName="PropertyValue" ... />

</modules>

<services>

<service id="ServiceID" class="ServiceClass" PropertyName="PropertyValue" ... />

</services>

<parameters>

<parameter id="ParameterID" class="ParameterClass" PropertyName="PropertyValue" ... />

</parameters>

37

Chapter 3. Configurations

</application>

• The outermost element <application> corresponds to the TApplication instance. The
PropertyName="PropertyValue" pairs specify the initial values for the properties of TApplication.

• The <paths> element contains the definition of path aliases and the PHP inclusion paths for
the application. Each path alias is specified via an <alias> whose path attribute takes an
absolute path or a path relative to the directory containing the application configuration file.
The <using> element specifies a particular path (in terms of namespace) to be appended
to the PHP include paths when the application runs. PRADO defines two default aliases:
System and Application. The former refers to the PRADO framework root directory, and
the latter refers to the directory containing the application configuration file.

• The <modules> element contains the configurations for a list of modules. Each module is
specified by a <module> element. Each module is uniquely identified by the id attribute and
is of type class. The PropertyName="PropertyValue" pairs specify the initial values for
the properties of the module.

• The <services> element is similar to the <modules> element. It mainly specifies the services
provided by the application.

• The <parameters> element contains a list of application-level parameters that are accessible
from anywhere in the application. You may specify component-typed parameters like spec-
ifying modules, or you may specify string-typed parameters which take a simpler format as
follows,

<parameter id="ParameterID" value="ParameterValue" />

Note, if the value attribute is not specified, the whole parameter XML node (of type
TXmlElement) will be returned as the parameter value. In addition, the System.Util.TParameterModule
module provides a way to load parameters from an external XML file. See more details in
its API documentation.

Complete specification of application configurations can be found in the DTD and XSD files.

By default without explicit configuration, a PRADO application when running will load a few core
modules, such as THttpRequest, THttpResponse, etc. It will also provide the TPageService as a
default service. Configuration and usage of these modules and services are covered in individual
sections of this tutorial. Note, if your application takes default settings for these modules and

38

file:<%~../../../../../docs/specs/application.dtd%>
file:<%~../../../../../docs/specs/application.xsd%>

3.6. Page Configurations

service, you do not need to provide an application configuration. However, if these modules or
services are not sufficient, or you want to change their behavior by configuring their property
values, you will need an application configuration.

3.6 Page Configurations

Page configurations are mainly used by TPageService to modify or append the application con-
figuration. As the name indicates, a page configuration is associated with a directory storing some
page files. It is stored as an XML file named config.xml.

When a user requests a page stored under <BasePath>/dir1/dir2, the TPageService will try to
parse and load config.xml files under <BasePath>, <BasePath>/dir1 and <BasePath>/dir1/dir2.
Paths, modules, and parameters specified in these configuration files will be appended or merged
into the existing application configuration. Here <BasePath> is as defined in page service.

The format of a page configuration file is as follows,

<configuration>

<paths>

<alias id="AliasID" path="AliasPath" />

<using namespace="Namespace" />

</paths>

<modules>

<module id="ModuleID" class="ModuleClass" PropertyName="PropertyValue" ... />

</modules>

<authorization>

<allow pages="PageID1,PageID2" users="User1,User2" roles="Role1,Role2" verb="get" />

<deny pages="PageID1,PageID2" users="User1,User2" roles="Role1,Role2" verb="post" />

</authorization>

<pages PropertyName="PropertyValue" ...>

<page id="PageID" PropertyName="PropertyValue" ... />

</pages>

<parameters>

<parameter id="ParameterID" class="ParameterClass" PropertyName="PropertyValue" ... />

</parameters>

</configuration>

39

Chapter 3. Configurations

The <paths>, <modules> and <parameters> are similar to those in an application configuration.
The <authorization> specifies the authorization rules that apply to the current page directory
and all its subdirectories. It will be explained in more detail in future sections. The <pages>

element specifies the initial values for the properties of pages. Each <page> element specifies the
initial property values for a particular page identified by the id attribute. Initial property values
given in the <pages> element apply to all pages in the current directory and all its subdirectories.

Complete specification of page configurations can be found in the DTD and XSD files.

40

file:<%~../../../../../docs/specs/config.dtd%>
file:<%~../../../../../docs/specs/config.xsd%>

Chapter 4

Control Reference : Standard

Controls

4.1 TButton

System.Web.UI.WebControls.TButton API Reference

TButton creates a click button on a Web page. The button’s caption is specified by Text property.
A button is used to submit data to a page. TButton raises two server-side events, Click and
Command, when it is clicked on the client-side. The difference between Click and Command events is
that the latter event is bubbled up to the button’s ancestor controls. A Command event handler can
use CommandName and CommandParameter associated with the event to perform specific actions.

Clicking on button can trigger form validation, if CausesValidation is true. And the validation
may be restricted within a certain group of validator controls according to ValidationGroup.

Controls.Samples.TButton.Home Demo

TODO: custom attributes

41

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TButton.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TButton.Home

Chapter 4. Control Reference : Standard Controls

4.2 TCheckBox

System.Web.UI.WebControls.TCheckBox API Reference

TCheckBox displays a check box on a Web page. A caption can be specified via Text and displayed
beside the check box. It can appear either on the right or left of the check box, which is determined
by TextAlign. You may further specify attributes applied to the text by using LabelAttributes.

To determine whether the check box is checked, test the Checked property. A CheckedChanged

event is raised if the state of Checked is changed between posts to the server. If AutoPostBack is
true, changing the check box state will cause postback action. And if CausesValidation is also
true, upon postback validation will be performed for validators within the specified ValidationGroup.

Controls.Samples.TCheckBox.Home Demo

4.3 TColorPicker

System.Web.UI.WebControls.TColorPicker API Reference

TBD

4.4 TDatePicker

System.Web.UI.WebControls.TDatePicker API Reference

TDatePicker displays a text box for date input purpose. When the text box receives focus, a
calendar will pop up and users can pick up from it a date that will be automatically entered
into the text box. The format of the date string displayed in the text box is determined by the
DateFormat property. Valid formats are the combination of the following tokens:

Character Format Pattern (en-US)

d day digit

dd padded day digit e.g. 01, 02

M month digit

MM padded month digit

42

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TCheckBox.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TCheckBox.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TColorPicker.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TDatePicker.html

4.4. TDatePicker

MMM localized abbreviated month names, e.g. Mar, Apr

MMMM localized month name, e.g. March, April

yy 2 digit year

yyyy 4 digit year

The date of the date picker can be set using the Date or Timestamp properties. The Date property
value must be in the same format as the pattern specified in the DateFormat property. The
Timestamp property only accepts integers such as the Unix timestamp.

TDatePicker has three Mode to show the date picker popup.

• Basic - Only shows a text input, focusing on the input shows the date picker.

• Button - Shows a button next to the text input, clicking on the button shows the date,
button text can be by the ButtonText property.

• ImageButton - Shows an image next to the text input, clicking on the image shows the date
picker, image source can be change through the ImageUrl property.

The CssClass property can be used to override the css class name for the date picker panel. The
CalendarStyle property changes the overall calendar style. The following CalendarStyle values
are available:

• default - The default calendar style.

The InputMode property can be set to ”TextBox” or ”DropDownList” with default as ”TextBox”.
In DropDownList mode, in addition to the popup date picker, three drop down list (day, month
and year) are presented to select the date . When InputMode equals ”DropDownList”, the order
and appearance of the date, month, and year will depend on the pattern specified in DateFormat

property.

The popup date picker can be hidden by specifying ShowCalendar as false. Much of the text of
the popup date picker can be changed to a different language using the Culture property.

The calendar picker year limit can be set using the FromYear and UpToYear properties where
FromYear is the starting year and UpToYear is the last year selectable. The starting day of the
week can be changed by the FirstDayOfWeek property, with 0 as Sunday, 1 as Monday, etc.

43

Chapter 4. Control Reference : Standard Controls

Note 1: If the InputMode is ”TextBox”, the DateFormat should only NOT contain MMM or MMMM
patterns. The server side date parser will not be able to determine the correct date if MMM or MMMM
are used. When InputMode equals ”DropDownList”, all patterns can be used.

Note 2: When the TDatePicker is used together with a validator, the DateFormat property of the
validator must be equal to the DateFormat of the TDatePicker AND must set DataType=”Date”
on the validator to ensure correct validation. See TCompareValidator, TDataTypeValidator and
TRangeValidator for details.

Controls.Samples.TDatePicker.Home Demo

4.5 TExpression

System.Web.UI.WebControls.TExpression API Reference

TExpression evaluates a PHP expression and displays the evaluation result. To specify the expres-
sion to be evaluated, set the Expression property. Note, TExpression evaluates the expression
during the rendering control lifecycle.

The context of the expression in a TExpression control is the control itself. That is, $this

represents the control object if it is present in the expression. For example, the following template
tag will display the title of the page containing the TExpression control.

<com:TExpression Expression="$this->Page->Title" />

Be aware, since TExpression allows execution of arbitrary PHP code, in general you should not
use it to evaluate expressions submitted by your application users.

Controls.Samples.TExpression.Home Demo

4.6 TFileUpload

System.Web.UI.WebControls.TFileUpload API Reference

TFileUpload displays a file upload field on a Web page. Upon postback, the text entered into the
field will be treated as the (local) name of the file that is uploaded to the server.

44

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDatePicker.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TExpression.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TExpression.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TFileUpload.html

4.7. THead

TFileUpload raises an OnFileUpload event when it is post back. The property HasFile indicates
whether the file upload is successful or not. If successful, the uploaded file may be saved on the
server by calling saveAs() method.

The following properties give the information about the uploaded file:

• FileName - the original client-side file name without directory information.

• FileType - the MIME type of the uploaded file.

• FileSize - the file size in bytes.

• LocalName - the absolute file path of the uploaded file on the server. Note, this file will be
deleted after the current page request is completed. Call saveAs() to save the uploaded file.

If the file upload is unsuccessful, the property ErrorCode gives the error code describing the cause
of failure. See PHP documentation for a complete explanation of the possible error codes.

Controls.Samples.TFileUpload.Home Demo

4.7 THead

System.Web.UI.WebControls.THead API Reference

TBD

4.8 THiddenField

System.Web.UI.WebControls.THiddenField API Reference

THiddenField represents a hidden field on a Web page. The value of the hidden field can be
accessed via its Value property.

THiddenField raises an OnValueChanged event if its value is changed during postback.

45

http://www.php.net/manual/en/features.file-upload.errors.php
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TFileUpload.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/THead.html
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/THiddenField.html

Chapter 4. Control Reference : Standard Controls

4.9 THtmlArea

System.Web.UI.WebControls.THtmlArea API Reference

THtmlArea displays a WYSIWYG text input field on a Web page to collect input in HTML format.
The text displayed in the THtmlArea control is specified or determined by using the Text property.
To adjust the size of the input region, set Width and Height properties instead of Columns and
Rows because the latter has no meaning under this situation. To disable the WYSIWYG feature,
set EnableVisualEdit to false.

THtmlArea provides the WYSIWYG feature by wrapping the functionalities provided by the
TinyMCE project.

The default editor gives only the basic tool bar. To change or add additional tool bars, use the
Options property to add additional editor options with each options on a new line. See TinyMCE
website for a complete list of options. The following example displays a toolbar specific for HTML
table manipulation,

<com:THtmlArea>

<prop:Options>

plugins : "table"

theme_advanced_buttons3 : "tablecontrols"

</prop:Options>

</com:THtmlArea>

The client-side visual editting capability is supported by Internet Explorer 5.0+ for Windows and
Gecko-based browser. If the browser does not support the visual editting, a traditional textarea
will be displayed.

Windows XP MacOS X 10.4

--

MSIE 6 OK

MSIE 5.5 SP2 OK

MSIE 5.0 OK

Mozilla 1.7.x OK OK

Firefox 1.0.x OK OK

Firefox 1.5b2 OK OK

46

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/THtmlArea.html
http://tinymce.moxiecode.com/
http://tinymce.moxiecode.com/tinymce/docs/index.html
http://tinymce.moxiecode.com/tinymce/docs/index.html

4.10. THyperLink

Safari 2.0 (412) OK(1)

Opera 9 Preview 1 OK(1) OK(1)

--

(1) - Partialy working

--

Controls.Samples.THtmlArea.Home Demo

4.10 THyperLink

System.Web.UI.WebControls.THyperLink API Reference

THyperLink displays a hyperlink on a page. The hyperlink URL is specified via the NavigateUrl

property, and link text is via the Text property. The link target is specified via the Target

property. It is also possible to display an image by setting the ImageUrl property. In this case,
Text is displayed as the alternate text of the image. If both ImageUrl and Text are empty, the
content enclosed within the control tag will be rendered.

Controls.Samples.THyperLink.Home Demo

4.11 TImageButton

System.Web.UI.WebControls.TImageButton API Reference

TImageButton is also similar to TButton, except that TImageButton displays the button as an
image. The image is specified via ImageUrl, and the alternate text is specified by Text. In
addition, it is possible to obtain the coordinate of the point where the image is clicked. The
coordinate information is contained in the event parameter of the Click event (not Command).

Controls.Samples.TImageButton.Home Demo

4.12 TImageMap

System.Web.UI.WebControls.TImageMap API Reference

47

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.THtmlArea.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/THyperLink.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.THyperLink.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TImageButton.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TImageButton.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TImageMap.html

Chapter 4. Control Reference : Standard Controls

TImageMap represents an image on a Web page with predefined hotspot regions that can respond
differently to users’ clicks on them. Depending on the HotSpotMode of the hotspot region, clicking
on the hotspot may trigger a postback or navigate to a specified URL.

Each hotspot is described using a THotSpot object and is maintained in the HotSpots collection
in TImageMap. A hotspot can be a circle, rectangle, polygon, etc.

Hotspots can be added to TImageMap via its HotSpots property or in a template like the following,

<com:TImageMap ... >

<com:TCircleHotSpot ... />

<com:TRectangleHotSpot ... />

<com:TPolygonHotSpot ... />

</com:TImageMap>

Controls.Samples.TImageMap.Home Demo

4.13 TImage

System.Web.UI.WebControls.TImage API Reference

TImage displays an image on a page. The image is specified via the ImageUrl property which takes
a relative or absolute URL to the image file. The alignment of the image displayed is set by the
ImageAlign property. To set alternate text or long description of the image, use AlternateText

or DescriptionUrl, respectively.

Controls.Samples.TImage.Home Demo

4.14 TInlineFrame

System.Web.UI.WebControls.TInlineFrame API Reference

TInlineFrame displays an inline frame (¡iframe¿) on a Web page. The location of the frame content
is specified by the FrameUrl property.

The appearance of a TInlineFrame may be customized with the following properties, in addition

48

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TImageMap.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TImage.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TImage.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TInlineFrame.html

4.15. TJavascriptLogger

to those inherited from TWebControl.

• Align - the alignment of the frame.

• DescriptionUrl - the URI of a long description of the frame’s contents.

• MarginWidth and MarginHeight - the number of pixels to use as the left/right margins and
top/bottom margins, respectively.

• ScrollBars - whether scrollbars are provided for the inline frame. By default, it is Auto,
meaning the scroll bars appear as needed. Setting it as None or Both to explicitly hide or
show the scroll bars.

The following samples show TInlineFrame with different property settings. The Google homepage
is used as the frame content.

Controls.Samples.TInlineFrame.Home Demo

4.15 TJavascriptLogger

System.Web.UI.WebControls.TJavascriptLogger API Reference

TJavascriptLogger provides logging for client-side javascript. It is mainly a wrapper of the
javascript developed at http://gleepglop.com/javascripts/logger/.

To use TJavascriptLogger, simply place the following component tag in a page template.

<com:TJavascriptLogger />

Then, the client-side javascript may contain the following statements. When they are executed,
they will appear in the logger window.

Logger.info(’something happend’);

Logger.warn(’A warning’);

Logger.error(’This is an error’);

Logger.debug(’debug information’);

To toggle the visibility of the logger and console on the browser window, press ALT-D (or CTRL-D
on OS X).

49

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TInlineFrame.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TJavascriptLogger.html
http://gleepglop.com/javascripts/logger/

Chapter 4. Control Reference : Standard Controls

4.16 TLabel

System.Web.UI.WebControls.TLabel API Reference

TLabel displays a piece of text on a Web page. The text to be displayed is set via its Text property.
If Text is empty, content enclosed within the TLabel component tag will be displayed. TLabel

may also be used as a form label associated with some control on the form. Since Text is not
HTML-encoded when being rendered, make sure it does not contain dangerous characters that
you want to avoid.

Controls.Samples.TLabel.Home Demo

4.17 TLinkButton

System.Web.UI.WebControls.TLinkButton API Reference

TLinkButton is similar to TButton in every aspect except that TLinkButton is displayed as a
hyperlink. The link text is determined by its Text property. If the Text property is empty, then
the body content of the button is displayed (therefore, you can enclose a ¡img¿ tag within the
button body and get an image button.

Controls.Samples.TLinkButton.Home Demo

4.18 TLiteral

System.Web.UI.WebControls.TLiteral API Reference

TLiteral displays a static text on a Web page. TLiteral is similar to the TLabel control, except
that the TLiteral * control has no style properties, such as BackColor, Font, etc.

The text displayed by TLiteral can be programmatically controlled by setting the Text property.
The text displayed may be HTML-encoded if the Encode is true (the default value is false).

TLiteral will render the contents enclosed within its component tag if Text is empty.

Be aware, if Encode is false, make sure Text does not contain unwanted characters that may bring
security vulnerabilities.

50

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TLabel.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TLabel.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TLinkButton.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TLinkButton.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TLiteral.html

4.19. TMultiView

Controls.Samples.TLiteral.Home Demo

4.19 TMultiView

System.Web.UI.WebControls.TMultiView API Reference

TMultiView serves as a container for a group of TView controls, which can be retrieved by the
Views property. Each view contains child controls. TMultiView determines which view and its
child controls are visible. At any time, at most one view is visible (called active). To make a view
active, set ActiveView or ActiveViewIndex. Note, by default there is no active view.

To add a view to TMultiView, manipulate the Views collection or add it in template as follows,

<com:TMultiView>

<com:TView>

view 1 content

</com:TView>

<com:TView>

view 2 content

</com:TView>

</com:TMultiView>

TMultiView responds to the following command events to manage the visibility of its views.

• NextView : switch to the next view (with respect to the currently active view).

• PreviousView : switch to the previous view (with respect to the currently active view).

• SwitchViewID : switch to a view by its ID path. The ID path is fetched from the command
parameter.

• SwitchViewIndex : switch to a view by its zero-based index in the Views collection. The
index is fetched from the command parameter.

Upon postback, if the active view index is changed, TMultiView will raise an OnActiveViewChanged

event.

51

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TLiteral.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TMultiView.html

Chapter 4. Control Reference : Standard Controls

The Hangman game is a typical use of TMultiView. The following example demonstrates another
usage of TMultiView.

Controls.Samples.TMultiView.Home Demo

4.20 TPanel

System.Web.UI.WebControls.TPanel API Reference

TPanel acts as a presentational container for other control. It displays a ¡div¿ element on a
page. The property Wrap specifies whether the panel’s body content should wrap or not, while
HorizontalAlign governs how the content is aligned horizontally and Direction indicates the
content direction (left to right or right to left). You can set BackImageUrl to give a background
image to the panel, and you can ste GroupingText so that the panel is displayed as a field set with
a legend text. Finally, you can specify a default button to be fired when users press ’return’ key
within the panel by setting the DefaultButton property.

Controls.Samples.TPanel.Home Demo

4.21 TPlaceHolder

System.Web.UI.WebControls.TPlaceHolder API Reference

TPlaceHolder reserves a place on a template, where static texts or controls may be dynamically
inserted.

Controls.Samples.TPlaceHolder.Home Demo

4.22 TRadioButton

System.Web.UI.WebControls.TRadioButton API Reference

TRadioButton is similar to TCheckBox in every aspect, except that TRadioButton displays a radio
button on a Web page. The radio button can belong to a specific group specified by GroupName

such that only one radio button within that group can be selected at most.

52

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TMultiView.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TPanel.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TPanel.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TPlaceHolder.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TPlaceHolder.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TRadioButton.html

4.23. TSafeHtml

Controls.Samples.TRadioButton.Home Demo

4.23 TSafeHtml

System.Web.UI.WebControls.TSafeHtml API Reference

TSafeHtml is a control that strips down all potentially dangerous HTML content. It is mainly a
wrapper of the SafeHTML project. According to the SafeHTML project, it tries to safeguard the
following situations when the string is to be displayed to end-users:

• Opening tag without its closing tag

• closing tag without its opening tag

• any of these tags: base, basefont, head, html, body, applet, object, iframe, frame, frameset,
script, layer, ilayer, embed, bgsound, link, meta, style, title, blink, xml, etc.

• any of these attributes: on*, data*, dynsrc

• javascript:/vbscript:/about: etc. protocols

• expression/behavior etc. in styles

• any other active content.

To use TSafeHtml, simply enclose the content to be secured within the TSafeHtml component tag
in a template. The content may consist of both static text and PRADO controls. If the latter, the
rendering result of the controls will be secured.

Controls.Samples.TSafeHtml.Home Demo

4.24 TStatements

System.Web.UI.WebControls.TStatements API Reference

TStatements evaluates a sequence of PHP statements and displays the content rendered by the
statements. To specify the PHP statements to be evaluated, set the Statements property. For
example, the following component tag displays the current time on the Web page,

53

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRadioButton.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TSafeHtml.html
http://pixel-apes.com/safehtml/
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TSafeHtml.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TStatements.html

Chapter 4. Control Reference : Standard Controls

<com:TStatements>

<prop:Statements>

setlocale(LC_ALL, ’nl_NL’);

echo strftime("%A %e %B %Y",time());

</prop:Statements>

</com:TStatements>

Note, TStatements evaluates the PHP statements during the rendering control lifecycle. Unlike
TExpression, TStatements only displays the content ’echoed’ within the statements.

The context of the statements in a TStatements control is the control itself. That is, $this

represents the control object if it is present in the statements. For example, the following statement
tag will display the title of the page containing the TStatements control.

<com:TStatements>

<prop:Statements>

$page=$this->Page;

echo $page->Title;

</prop:Statements>

</com:TStatements>

Be aware, since TStatements allows execution of arbitrary PHP code, in general you should not
use it to evaluate PHP code submitted by your application users.

Controls.Samples.TStatements.Home Demo

4.25 TTable

System.Web.UI.WebControls.TTable API Reference

TTable displays an HTML table on a page. It is used together with TTableRow and TTableCell

to allow programmatically manipulating HTML tables. The rows of the table is stored in Rows

property. You may set the table cellspacing and cellpadding via the CellSpacing and CellPadding

properties, respectively. The table caption can be specified via Caption whose alignment is specified
by CaptionAlign. The GridLines property indicates how the table should display its borders,
and the BackImageUrl allows the table to have a background image.

54

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TStatements.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TTable.html

4.26. TTextBox

Controls.Samples.TTable.Home Demo

4.26 TTextBox

System.Web.UI.WebControls.TTextBox API Reference

TTextBox displays a text box on a Web page. The content in the text box is determined by the
Text property. You can create a SingleLine, a MultiLine, or a Password text box by setting the
TextMode property. The Rows and Columns properties specify their dimensions. If AutoPostBack
is true, changing the content in the text box and then moving the focus out of it will cause postback
action.

Controls.Samples.TTextBox.Home Demo

4.27 TTextHighlighter

System.Web.UI.WebControls.TTextHighlighter API Reference

TTextHighlighter does syntax highlighting for its body content, including both static text and
the rendering results of its child controls. The text being highlighted follows the syntax of the
specified Language, which can be ’php’ (default), ’prado’, ’css’, ’html’, etc. Here, ’prado’ stands
for the syntax of PRADO control templates.

If line numbers are desired in front of each line, set ShowLineNumbers to true.

To use TTextHighlighter, simply enclose the contents to be syntax highlighted within the body
of a TTextHighlighter control. The following example highlights a piece of PHP code,

<com:TTextHighlighter ShowLineNumbers="true">

<?php

$str = ’one|two|three|four’;

print_r(explode(’|’, $str, 2)); // will output an array

?>

</com:TTextHighlighter>

Controls.Samples.TTextHighlighter.Home Demo

55

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TTable.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TTextBox.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TTextBox.Home
http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TTextHighlighter.html
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TTextHighlighter.Home

Chapter 4. Control Reference : Standard Controls

4.28 TWizard

System.Web.UI.WebControls.TWizard API Reference

4.28.1 Overview

TWizard is analogous to the installation wizard commonly used to install software on Windows.
It splits a large form and presents the user with a series of smaller forms, called wizard steps, to
complete. The following figure shows how a wizard is composed of when presented to users, where
step content is the main content of a wizard step for users to complete, header refers to header
content common to all steps, navigation contains buttons that allow users to navigate step by
step, and side bar contains a list of hyperlinks by which users can reach to any step with one
click. The visibility of the side bar can be toggled by setting ShowSideBar.

By default, TWizard embeds the above components in an HTML table so that the side bar is
displayed on the left while the rest on the right. If UseDefaultLayout is set to false, no HTML table
will be used, and developers should use pure CSS techniques to position the wizard components.
Note, each component is displayed as a ¡div¿ and the wizard itself is also a ¡div¿ that encloses its
components’ ¡div¿.

Wizard steps are represented by TWizardStep and are maintained in TWizard through its WizardSteps
property. At any time, only one step is visible, which is determined by the ActiveStep property.
The ActiveStepIndex property gives the index of the active step in the step collection. Clicking
on navigation buttons can activate different wizard steps.

Wizard steps are typically added to a wizard through template as follows,

<com:TWizard>

<com:TWizardStep Title="step 1" StepType="Start">

content in step 1, may contain other controls

</com:TWizardStep>

56

http://www.pradosoft.com/docs/manual/System.Web.UI.WebControls/TWizard.html

4.28. TWizard

<com:TWizardStep Title="step 2" StepType="Step">

content in step 2, may contain other controls

</com:TWizardStep>

<com:TWizardStep Title="finish step" StepType="Finish">

content in finish step, may contain other controls

</com:TWizardStep>

</com:TWizard>

In the above, StepType refers to the type of a wizard step, which can affect how the navigation
appearance and behavior of the step. A wizard step can be of one of the following types:

• Start - the first step in the wizard.

• Step - the internal steps in the wizard.

• Finish - the last step that allows user interaction.

• Complete - the step that shows a summary to user. In this step, both side bar and navigation
panel are invisible. Thus, this step usually does not allow user interaction.

• Auto - the step type is determined by wizard automatically.

4.28.2 Using TWizard

A Single-Step Wizard Sample

In this sample, we use wizard to collect user’s preference of color. In the first step, the user is
presented with a dropdown list from which he can choose hist favorite color. In the second step,
the complete step, his choice in the previous step is displayed. In real application, at this step the
choice may be stored in database in the backend.

Controls.Samples.TWizard.Sample1 Demo

57

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TWizard.Sample1

Chapter 4. Control Reference : Standard Controls

Customizing Wizard Styles

TWizard defines a whole set of properties for customization of appearance of its various compo-
nents as shown in the above figure. In particular, the following properties are provided for style
customization:

• Header - HeaderStyle.

• Step - StepStyle.

• Navigation - NavigationStyle, StartNextButtonStyle, StepNextButtonStyle, StepPreviousButtonStyle,
FinishPreviousButtonStyle, FinishCompleteButtonStyle, CancelButtonStyle.

• Side bar - SideBarStyle, SideBarButtonStyle.

Controls.Samples.TWizard.Sample2 Demo

Customizing Wizard Navigation

Given a set of wizard steps, TWizard supports three different ways of navigation among them:

• Bidirectional - Users can navigate forward and backward along a sequence of wizard steps.
User input data is usally collected at the last step. This is also known as commit-at-the-end
model. It is the default navigation way that TWizard supports.

• Unidirectional - Users can navigate forward along a sequence of wizard steps. Backward
move is not allowed. User input data is usally collected step by step. This is also known as
command-as-you-go model. To disallow backward move to a specific step, set its AllowReturn
property to false.

• Nonlinear - User input in a step determines which step to go next. To do so, set ActiveStepIndex
to the step that you want the user to go to. In this case, when a user clicks on the previous
button in the navigation panel, the previous step that they visited (not the previous step in
the sequential order) will become visible.

Controls.Samples.TWizard.Sample3 Demo

58

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TWizard.Sample2
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TWizard.Sample3

4.28. TWizard

Using Templates in Wizard

TWizard supports more concrete control of its outlook through templating. In particular, it pro-
vides the following template properties that allow complete customization of the wizard’s header,
navigation and side bar.

• Header - HeaderTemplate.

• Navigation - StartNavigationTemplate, StepNavigationTemplate, FinishNavigationTemplate.

• Side bar - SideBarTemplate.

Controls.Samples.TWizard.Sample4 Demo

Using Templated Wizard Steps

Wizard steps can also be templated. By using TTemplatedWizardStep, one can customize step
content and navigation through its ContentTemplate and NavigationTemplate properties, respec-
tively. This is useful for control developers to build specialized wizards, such as user registration,
shopping carts, etc.

Controls.Samples.TWizard.Sample5 Demo

59

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TWizard.Sample4
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TWizard.Sample5

Chapter 4. Control Reference : Standard Controls

60

Chapter 5

Control Reference : List Controls

5.1 List Controls

List controls covered in this section all inherit directly or indirectly from TListControl. Therefore,
they share the same set of commonly used properties, including,

• Items - list of items in the control. The items are of type TListItem. The item list can be
populated via databinding or specified in templates like the following:

<com:TListBox>

<com:TListItem Text="text 1" Value="value 1" />

<com:TListItem Text="text 2" Value="value 2" Selected="true" />

<com:TListItem Text="text 3" Value="value 3" />

</com:TListBox>

• SelectedIndex - the zero-based index of the first selected item in the item list.

• SelectedIndices - the indices of all selected items.

• SelectedItem - the first selected item in the item list.

• SelectedValue - the value of the first selected item in the item list.

• AutoPostBack - whether changing the selection of the control should trigger postback.

61

Chapter 5. Control Reference : List Controls

• CausesValidation - whether validation should be performed when postback is triggered by
the list control.

Since TListControl inherits from TDataBoundControl, these list controls also share a common
operation known as databinding. The Items can be populated from preexisting data specified by
DataSource or DataSourceID. A function call to dataBind() will cause the data population. For
list controls, data can be specified in the following two kinds of format:

• one-dimensional array or objects implementing ITraversable : array keys will be used as
list item values, and array values will be used as list item texts. For example

$listbox->DataSource=array(

’key 1’=>’item 1’,

’key 2’=>’item 2’,

’key 3’=>’item 3’);

$listbox->dataBind();

• tabular (two-dimensional) data : each row of data populates a single list item. The list item
value is specified by the data member indexed with DataValueField, and the list item text
by DataTextField. For example,

$listbox->DataTextField=’name’;

$listbox->DataValueField=’id’;

$listbox->DataSource=array(

array(’id’=>’001’,’name’=>’John’,’age’=>31),

array(’id’=>’002’,’name’=>’Mary’,’age’=>30),

array(’id’=>’003’,’name’=>’Cary’,’age’=>20));

$listbox->dataBind();

5.1.1 TListBox

TListBox displays a list box that allows single or multiple selection. Set the property SelectionMode

as Single to make a single selection list box, and Multiple a multiple selection list box. The num-
ber of rows displayed in the box is specified via the Rows property value.

Controls.Samples.TListBox.Home Demo

62

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TListBox.Home

5.1. List Controls

5.1.2 TDropDownList

TDropDownList displays a dropdown list box that allows users to select a single option from a few
prespecified ones.

Controls.Samples.TDropDownList.Home Demo

5.1.3 TCheckBoxList

TCheckBoxList displays a list of checkboxes on a Web page. The alignment of the text besides
each checkbox can be specified TextAlign. The layout of the checkboxes can be controlled by the
following properties:

• RepeatLayout - can be either Table or Flow. A Table uses HTML table cells to organize
the checkboxes, while a Flow uses HTML span tags and breaks for the organization. With
Table layout, you can set CellPadding and CellSpacing.

• RepeatColumns - how many columns the checkboxes should be displayed in.

• RepeatDirection - how to traverse the checkboxes, in a horizontal way or a vertical way
(because the checkboxes are displayed in a matrix-like layout).

Controls.Samples.TCheckBoxList.Home Demo

5.1.4 TRadioButtonList

TRadioButtonList is similar to TCheckBoxList in every aspect except that each TRadioButtonList

displays a group of radiobuttons. Only one of the radiobuttions can be selected (TCheckBoxList
allows multiple selections.)

Controls.Samples.TRadioButtonList.Home Demo

5.1.5 TBulletedList

TBulletedList displays items in a bullet format on a Web page. The style of the bullets can be
specified by BulletStyle. When the style is CustomImage, the bullets are displayed as images,
which is specified by BulletImageUrl.

63

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDropDownList.Home
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TCheckBoxList.Home
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRadioButtonList.Home

Chapter 5. Control Reference : List Controls

TBulletedList displays the item texts in three different modes,

• Text - the item texts are displayed as static texts;

• HyperLink - each item is displayed as a hyperlink whose URL is given by the item value,
and Target property can be used to specify the target browser window;

• LinkButton - each item is displayed as a link button which posts back to the page if a user
clicks on that, and the event OnClick will be raised under such a circumstance.

Controls.Samples.TBulletedList.Home Demo

64

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TBulletedList.Home

Chapter 6

Control Reference : Validation

Controls

6.1 Validation Controls

Validation controls, called validators, perform validation on user-entered data values when they
are post back to the server. The validation is triggered by a postback control, such as a TButton,
a TLinkButton or a TTextBox (under AutoPostBack mode) whose CausesValidation property is
true.

Validation is always performed on server side. If EnableClientScript is true and the client
browser supports JavaScript, validators may also perform client-side validation. Client-side valida-
tion will validate user input before it is sent to the server. The form data will not be submitted if
any error is detected. This avoids the round-trip of information necessary for server-side validation.

Validators share a common set of properties, which are defined in the base class TBaseValidator
class and listed as follows,

• ControlToValidate specifies the input control to be validated. This property must be set
to the ID path of an input control. An ID path is the dot-connected IDs of the controls
reaching from the validator’s naming container to the target control.

• ErrorMessage specifies the error message to be displayed in case the corresponding validator

65

Chapter 6. Control Reference : Validation Controls

fails.

• Text is similar to ErrorMessage. If they are both present, Text takes precedence. This
property is useful when used together with TValidationSummary.

• ValidationGroup specifies which group the validator is in. The validator will perform vali-
dation only if the current postback is triggered by a control which is in the same group.

• EnableClientScript specifies whether client-side validation should be performed. By de-
fault, it is enabled.

• Display specifies how error messages are displayed. It takes one of the following three values:

– None - the error message will not be displayed even if the validator fails.

– Static - the space for displaying the error message is reserved. Therefore, showing up
the error message will not change your existing page layout.

– Dynamic - the space for displaying the error message is NOT reserved. Therefore,
showing up the error message will shift the layout of your page around (usually down).

• ControlCssClass - the Css class that is applied to the control being validated in case the
validation fails.

• FocusOnError - set focus at the validating place if the validation fails. Defaults to false.

• FocusElementID - the ID of the HTML element that will receive focus if validation fails and
FocusOnError is true.

6.1.1 TRequiredFieldValidator

TRequiredFieldValidator ensures that the user enters some data in the specified input field. By
default, TRequiredFieldValidator will check if the user input is empty or not. The validation fails if
the input is empty. By setting InitialValue, the validator can check if the user input is different
from InitialValue. If not, the validation fails.

Controls.Samples.TRequiredFieldValidator.Home Demo

6.1.2 TRegularExpressionValidator

TRegularExpressionValidator verifies the user input against a regular pattern. The validation
fails if the input does not match the pattern. The regular expression can be specified by the

66

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRequiredFieldValidator.Home

6.1. Validation Controls

RegularExpression property. Some commonly used regular expressions include:

• At least 6 characters: [\w]{6,}

• Japanese Phone Number: (0\d{1,4}-|\(0\d{1,4}\) ?)?\d{1,4}-\d{4}

• Japanese Postal Code: \d{3}(-(\d{4}|\d{2}))?

• P.R.C. Phone Number: (\(\d{3}\)|\d{3}-)?\d{8}

• P.R.C. Postal Code: \d{6}

• P.R.C. Social Security Number: \d{18}|\d{15}

• U.S. Phone Number: ((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}

• U.S. ZIP Code: \d{5}(-\d{4})?

• U.S. Social Security Number: \d{3}-\d{2}-\d{4}

More regular expression patterns can be found on the Internet, e.g. http://regexlib.com/.

Note, TRegularExpressionValidator only checks for nonempty user input. Use a TRequiredField-
Validator to ensure the user input is not empty.

Controls.Samples.TRegularExpressionValidator.Home Demo

¡h2 id=”TEmailAddressValidator”¿TEmailAddressValidator¡/h2¿

TEmailAddressValidator verifies that the user input is a valid email address. The validator uses
a regular expression to check if the input is in a valid email address format. If CheckMXRecord is
true, the validator will also check whether the MX record indicated by the email address is valid,
provided checkdnsrr() is available in the installed PHP.

Note, if the input being validated is empty, TEmailAddressValidator will not do validation. Use a
TRequiredFieldValidator to ensure the value is not empty.

Controls.Samples.TEmailAddressValidator.Home Demo

6.1.3 TCompareValidator

TCompareValidator compares the user input with a constant value specified by ValueToCompare,
or another user input specified by ControlToCompare. The Operator property specifies how to

67

http://regexlib.com/
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRegularExpressionValidator.Home
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TEmailAddressValidator.Home

Chapter 6. Control Reference : Validation Controls

compare the values, which includes Equal, NotEqual, GreaterThan, GreaterThanEqual, LessThan
and LessThanEqual. Before comparison, the values being compared will be converted to the type
specified by DataType listed as follows,

• String - A string data type.

• Integer - A 32-bit signed integer data type.

• Float - A double-precision floating point number data type.

• Date - A date data type. The date format can be specified by setting DateFormat property,
which must be recognizable by TSimpleDateFormatter. If the property is not set, the GNU
date syntax is assumed.

Note, if the input being validated is empty, TEmailAddressValidator will not do validation. Use a
TRequiredFieldValidator to ensure the value is not empty.

N.B. If validating against a TDatePicker the DataType must be equal to ”Date” and the DateFormat
property of the validator must be equal to the DateFormat of the TDatePicker.

Controls.Samples.TCompareValidator.Home Demo

6.1.4 TDataTypeValidator

TDataTypeValidator verifies if the input data is of specific type indicated by DataType. The data
types that can be checked against are the same as those in TCompareValidator.

N.B. If validating against a TDatePicker the DataType must be equal to ”Date” and the DateFormat
property of the validator must be equal to the DateFormat of the TDatePicker.

Controls.Samples.TDataTypeValidator.Home Demo

6.1.5 TRangeValidator

TRangeValidator verifies whether an input value is within a specified range. TRangeValidator uses
three key properties to perform its validation. The MinValue and MaxValue properties specify the
minimum and maximum values of the valid range. The DataType property specifies the data type
of the value being validated. The value will be first converted into the specified type and then

68

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TCompareValidator.Home
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataTypeValidator.Home

6.1. Validation Controls

compare with the valid range. The data types that can be checked against are the same as those
in TCompareValidator.

N.B. If validating against a TDatePicker the DataType must be equal to ”Date” and the DateFormat
property of the validator must be equal to the DateFormat of the TDatePicker.

Controls.Samples.TRangeValidator.Home Demo

6.1.6 TCustomValidator

TCustomValidator performs user-defined validation (either server-side or client-side or both) on
an input control.

To create a server-side validation function, provide a handler for the OnServerValidate event that
performs the validation. The data string of the input control to validate can be accessed by the
event parameter’s Value property. The result of the validation should be stored in the IsValid

property of the parameter.

To create a client-side validation function, add the client-side validation javascript function to the
page template and assign its name to the ClientValidationFunction property. The function
should have the following signature:

<script type="text/javascript">

function ValidationFunctionName(sender, parameter)

{

// if(parameter == ...)

// return true;

// else

// return false;

}

</script>

Controls.Samples.TCustomValidator.Home Demo

69

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRangeValidator.Home
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TCustomValidator.Home

Chapter 6. Control Reference : Validation Controls

6.1.7 TValidationSummary

TValidationSummary displays a summary of validation errors inline on a Web page, in a message
box, or both.

By default, a validation summary will collect ErrorMessage of all failed validators on the page.
If ValidationGroup is not empty, only those validators who belong to the group will show their
error messages in the summary.

The summary can be displayed as a list, a bulleted list, or a single paragraph based on the
DisplayMode property. The messages shown can be prefixed with HeaderText. The summary can
be displayed on the Web page or in a JavaScript message box, by setting the ShowSummary and
ShowMessageBox properties, respectively. Note, the latter is only effective when EnableClientScript

is true.

Controls.Samples.TValidationSummary.Home Demo

70

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TValidationSummary.Home

Chapter 7

Control Reference : Data Controls

7.1 Data Controls

• TDataList is used to display or modify a list of data items.

• TDataGrid displays data in a tabular format with rows and columns.

• TRepeater displays its content defined in templates repeatedly based on the given data.

7.2 TDataList

TDataList is used to display or modify a list of data items specified by its DataSource or DataSourceID
property. Each data item is displayed by a data list item which is a child control of the data list.
The Items property contains the list of all data list items.

TDataList displays its items in either a Table or Flow layout, which is specified by the RepeatLayout
property. A table layout uses HTML table cells to organize the items while a flow layout uses line
breaks to organize the items. When the layout is Table, the table’s cellpadding and cellspacing
can be adjusted by CellPadding and CellSpacing properties, respectively. And Caption and
CaptionAlign can be used to add a table caption with the specified alignment. The number of
columns used to display the data list items is specified via RepeatColumns property, while the
RepeatDirection governs the order of the items being rendered.

71

Chapter 7. Control Reference : Data Controls

Each data list item is created according to one of the seven kinds of templates that developers may
specified for a TDataList,

• HeaderTemplate - the template used for displaying content at the beginning of a data list;

• FooterTemplate - the template used for displaying content at the end of a data list;

• ItemTemplate - the template used for displaying every data list item. If AlternatingItemTemplate
is also defined, ItemTemplate will be used for displaying item 1, 3, 5, etc.

• AlternatingItemTemplate - the template used for displaying every alternating data list
item (i.e., item 2, 4, 6, etc.)

• SeparatorTemplate - the template used for displaying content between items.

• EditItemTemplate - the template used for displaying items in edit mode.

• SelectedItemTemplate - the template used for displaying items in selected mode.

Each of the above templates is associated with a style property that is applied to the items using the
template. For example, ItemTemplate is associated with a property named AlternatingItemStyle.
Through this property, one can set CSS style fields or CSS classes for the data list items.

Item styles are applied in a hierarchical way. Style in higher hierarchy will inherit from styles in
lower hierarchy. Starting from the lowest hierarchy, the item styles include item’s own style,
ItemStyle, AlternatingItemStyle, SelectedItemStyle, and EditItemStyle. Therefore, if
background color is set as red in ItemStyle, EditItemStyle will also have red background color,
unless it is explicitly set to a different value.

A data list item can be in normal mode, edit mode or selected mode. Different templates
will apply to items of different modes. To change an item’s mode, modify EditItemIndex or
SelectedItemIndex. Note, if an item is in edit mode, then selecting this item will have no effect.

TDataList provides several events to facilitate manipulation of its items,

• OnItemCreated - raised each time an item is newly created. When the event is raised, data
and child controls are both available for the new item.

• OnItemDataBound - raised each time an item just completes databinding. When the event
is raised, data and child controls are both available for the item, and the item has finished
databindings of itself and all its child controls.

72

7.3. TDataGrid

• OnItemCommand - raised when a child control of some item (such as a TButton) raises an
OnCommand event.

• command events - raised when a child control’s OnCommand event has a specific command
name,

– OnSelectedIndexChanged - if the command name is select.

– OnEditCommand - if the command name is edit.

– OnDeleteCommand - if the command name is delete.

– OnUpdateCommand - if the command name is update.

– OnCancelCommand - if the command name is cancel.

The following example shows how to use TDataList to display tabular data, with different layout
and styles.

Controls.Samples.TDataList.Sample1 Demo

A common use of TDataList is for maintaining tabular data, including browsing, editting, deleting
data items. This is enabled by the command events and various item templates of TDataList.

The following example displays a computer product information. Users can add new products,
modify or delete existing ones. In order to locate the data item for updating or deleting, DataKeys
property is used.

Be aware, for simplicity, this application does not do any input validation. In real applications,
make sure user inputs are valid before saving them into databases.

Controls.Samples.TDataList.Sample2 Demo

7.3 TDataGrid

TDatagrid is an important control in building complex Web applications. It displays data in a
tabular format with rows (also called items) and columns. A row is composed by cells, while
columns govern how cells should be displayed according to their association with the columns.
Data specified via DataSource or DataSourceID are bound to the rows and feed contents to cells.

TDataGrid is highly interactive. Users can sort the data along specified columns, navigate through
different pages of the data, and perform actions, such as editting and deleting, on rows of the data.

73

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataList.Sample1
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataList.Sample2

Chapter 7. Control Reference : Data Controls

Rows of TDataGrid can be accessed via its Items property. A row (item) can be in one of several
modes: browsing, editting and selecting, which affects how cells in the row are displayed. To
change an item’s mode, modify EditItemIndex or SelectedItemIndex. Note, if an item is in edit
mode, then selecting this item will have no effect.

7.3.1 Columns

Columns of a data grid determine how the associated cells are displayed. For example, cells
associated with a TBoundColumn are displayed differently according to their modes. A cell is
displayed as a static text if the cell is in browsing mode, a text box if it is in editting mode, and
so on.

PRADO provides five types of columns:

• TBoundColumn associates cells with a specific field of data and displays the cells according to
their modes.

• TCheckBoxColumn associates cells with a specific field of data and displays in each cell a
checkbox whose check state is determined by the data field value.

• THyperLinkColumn displays in the cells a hyperlink whose caption and URL can be either
statically specified or bound to some fields of data.

• TEditCommandColumn displays in the cells edit/update/cancel command buttons according
to the state of the item that a cell resides in.

• TButtonColumn displays in the cells a command button.

• TTemplateColumn displays the cells according to different templates defined for it.

7.3.2 Item Styles

TDataGrid defines different styles applied to its items. For example, AlternatingItemStyle is
applied to alternating items (item 2, 4, 6, etc.) Through these properties, one can set CSS style
fields or CSS classes for the items.

Item styles are applied in a hierarchical way. Styles in higher hierarchy will inherit from styles in
lower hierarchy. Starting from the lowest hierarchy, the item styles include item’s own style,

74

7.3. TDataGrid

ItemStyle, AlternatingItemStyle, SelectedItemStyle, and EditItemStyle. Therefore, if
background color is set as red in ItemStyle, EditItemStyle will also have red background color,
unless it is explicitly set to a different value.

7.3.3 Events

TDataGrid provides several events to facilitate manipulation of its items,

• OnItemCreated - raised each time an item is newly created. When the event is raised, data
and child controls are both available for the new item.

• OnItemDataBound - raised each time an item just completes databinding. When the event
is raised, data and child controls are both available for the item, and the item has finished
databindings of itself and all its child controls.

• OnItemCommand - raised when a child control of some item (such as a TButton) raises an
OnCommand event.

• command events - raised when a child control’s OnCommand event has a specific command
name,

– OnSelectedIndexChanged - if the command name is select.

– OnEditCommand - if the command name is edit.

– OnDeleteCommand - if the command name is delete.

– OnUpdateCommand - if the command name is update.

– OnCancelCommand - if the command name is cancel.

– OnSortCommand - if the command name is sort.

– OnPageIndexChanged - if the command name is page.

7.3.4 Using TDataGrid

Automatically Generated Columns

TDataGrid by default will create a list of columns based on the structure of the bound data.
TDataGrid will read the first row of the data, extract the field names of the row, and construct a
column for each field. Each column is of type TBoundColumn.

75

Chapter 7. Control Reference : Data Controls

The following example displays a list of computer product information using a TDataGrid. Columns
are automatically generated. Pay attention to how item styles are specified and inherited. The
data are populated into the datagrid using the follow code, which is common among most datagrid
applications,

public function onLoad($param) {

parent::onLoad($param);

if(!$this->IsPostBack) {

$this->DataGrid->DataSource=$this->Data;

$this->DataGrid->dataBind();

}

}

Controls.Samples.TDataGrid.Sample1 Demo

Manually Specified Columns

Using automatically generated columns gives a quick way of browsing tabular data. In real ap-
plications, however, automatically generated columns are often not sufficient because developers
have no way customizing their appearance. Manually specified columns are thus more desirable.

To manually specify columns, set AutoGenerateColumns to false, and specify the columns in a
template like the following,

<com:TDataGrid ...>

<com:TBoundColumn DataField="name" .../>

<com:TBoundColumn DataField="price" .../>

<com:TEditCommandColumn ...>

...

</com:TDataGrid>

Note, if AutoGenerateColumns is true and there are manually specified columns, the automatically
generated columns will be appended to the manually specified columns. Also note, the datagrid’s
Columns property contains only manually specified columns and no automatically generated ones.

The following example uses manually specified columns to show a list of book information,

76

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataGrid.Sample1

7.3. TDataGrid

• Book title - displayed as a hyperlink pointing to the corresponding amazon.com book page.
THyperLinkColumn is used.

• Publisher - displayed as a piece of text using TBoundColumn.

• Price - displayed as a piece of text using TBoundColumn with output formatting string and
customized styles.

• In-stock or not - displayed as a checkbox using TCheckBoxColumn.

• Rating - displayed as an image using TTemplateColumn which allows maximum freedom in
specifiying cell contents.

Pay attention to how item (row) styles and column styles cooperate together to affect the appear-
ance of the cells in the datagrid. Controls.Samples.TDataGrid.Sample2 Demo

7.3.5 Interacting with TDataGrid

Besides the rich data presentation functionalities as demonstrated in previous section, TDataGrid
is also highly user interactive. An import usage of TDataGrid is editting or deleting rows of
data. The TBoundColumn can adjust the associated cell presentation according to the mode of
datagrid items. When an item is in browsing mode, the cell is displayed with a static text; when
the item is in editting mode, a textbox is displayed to collect user inputs. TDataGrid provides
TEditCommandColumn for switching item modes. In addition, TButtonColumn offers developers the
flexibility of creating arbitrary buttons for various user interactions.

The following example shows how to make the previous book information table an interactive one.
It allows users to edit and delete book items from the table. Two additional columns are used in
the example to allow users interact with the datagrid: TEditCommandColumn and TButtonColumn.

Controls.Samples.TDataGrid.Sample3 Demo

7.3.6 Sorting

TDataGrid supports sorting its items according to specific columns. To enable sorting, set AllowSorting
to true. This will turn column headers into clickable buttons if their SortExpression property
is not empty. When users click on the header buttons, an OnSortCommand event will be raised.

77

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataGrid.Sample2
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataGrid.Sample3

Chapter 7. Control Reference : Data Controls

Developers can write handlers to respond to the sort command and sort the data according to
SortExpression which is specified in the corresponding column.

The following example turns the datagrid in Example 2 into a sortable one. Users can click on the
link button displayed in the header of any column, and the data will be sorted in ascending order
along that column.

Controls.Samples.TDataGrid.Sample4 Demo

7.3.7 Paging

When dealing with large datasets, paging is helpful in reducing the page size and complexity.
TDataGrid has an embedded pager that allows users to specify which page of data they want to
see. The pager can be customized via PagerStyle. For example, PagerStyle.Visible determines
whether the pager is visible or not; PagerStyle.Position indicates where the pager is displayed;
and PagerStyle.Mode specifies what type of pager is displayed, a numeric one or a next-prev one.

To enable paging, set AllowPaging to true. The number of rows of data displayed in a page is
specified by PageSize, while the index (zero-based) of the page currently showing to users is by
CurrentPageIndex. When users click on a pager button, TDataGrid raises OnPageIndexChanged
event. Typically, the event handler is written as follows,

public function pageIndexChanged($sender,$param) {

$this->DataGrid->CurrentPageIndex=$param->NewPageIndex;

$this->DataGrid->DataSource=$this->Data;

$this->DataGrid->dataBind();

}

The following example enables the paging functionality of the datagrid shown in Example 1. In
this example, you can set various pager styles interactively to see how they affect the pager display.

Controls.Samples.TDataGrid.Sample5 Demo

Custom Paging

The paging functionality shown above requires loading all data into memory, even though only a
portion of them is displayed in a page. For large datasets, this is inefficient and may not always be

78

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataGrid.Sample4
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataGrid.Sample5

7.3. TDataGrid

feasible. TDataGrid provides custom paging to solve this problem. Custom paging only requires
the portion of the data to be displayed to end users.

To enable custom paging, set both AllowPaging and AllowCustomPaging to true. Notify TData-
Grid the total number of data items (rows) available by setting VirtualItemCount. And respond
to the OnPageIndexChanged event. In the event handler, use the NewPageIndex property of the
event parameter to fetch the new page of data from data source. For MySQL database, this can
be done by using LIMIT clause in an SQL select statement.

Controls.Samples.TDataGrid.Sample6 Demo

7.3.8 Extending TDataGrid

Besides traditional class inheritance, extensibility of TDataGrid is mainly through developing new
datagrid column components. For example, one may want to display an image column. He may
use TTemplateColumn to accomplish this task. A better solution is to develop an image column
component so that the work can be reused easily in other projects.

All datagrid column components must inherit from TDataGridColumn. The main method that
needs to be overridden is initializeCell() which creates content for cells in the corresponding
column. Since each cell is also in an item (row) and the item can have different types (such as
Header, AltneratingItem, etc.), different content may be created according to the item type. For
the image column example, one may want to create a TImage control within cells residing in items
of Item and AlterantingItem types.

class ImageColumn extends TDataGridColumn {

...

public function initializeCell($cell,$columnIndex,$itemType) {

parent::initializeCell($cell,$columnIndex,$itemType);

if($itemType===’Item’ || $itemType===’AlternatingItem’) {

$image=new TImage;

// ... customization of the image

$cell->Controls[]=$image;

}

}

}

79

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TDataGrid.Sample6

Chapter 7. Control Reference : Data Controls

In initializeCell(), remember to call the parent implementation, as it initializes cells in items
of Header and Footer types.

7.4 TRepeater

TRepeater displays its content defined in templates repeatedly based on the given data specified
by the DataSource or DataSourceID property. The repeated contents can be retrieved from the
Items property. Each item is created by instantiating a template and each is a child control of the
repeater.

Like normal control templates, the repeater templates can contain static text, controls and special
tags, which after instantiation, become child contents of the corresponding item. TRepeater defiens
five templates for different purposes,

• HeaderTemplate - the template used for displaying content at the beginning of a repeater;

• FooterTemplate - the template used for displaying content at the end of a repeater;

• ItemTemplate - the template used for displaying every repeater item. If AlternatingItemTemplate
is also defined, ItemTemplate will be used for displaying item 1, 3, 5, etc.

• AlternatingItemTemplate - the template used for displaying every alternating repeater item
(i.e., item 2, 4, 6, etc.)

• SeparatorTemplate - the template used for displaying content between items.

To populate data into the repeater items, set DataSource to a valid data object, such as array,
TList, TMap, or a database table, and then call dataBind() for the repeater. That is,

class MyPage extends TPage {

protected function onLoad($param) {

parent::onLoad($param);

if(!$this->IsPostBack) {

$this->Repeater->DataSource=$data;

$this->Repeater->dataBind();

}

}

}

80

7.4. TRepeater

Normally, you only need to do this when the page containing the repeater is initially requested.
In postbacks, TRepeater is smart enough to remember the previous state, i.e., contents populated
with datasource information.The following sample displays tabular data using TRepeater.

TRepeater provides several events to facilitate manipulation of its items,

• OnItemCreated - raised each time an item is newly created. When the event is raised, data
and child controls are both available for the new item.

• OnItemDataBound - raised each time an item just completes databinding. When the event
is raised, data and child controls are both available for the item, and the item has finished
databindings of itself and all its child controls.

• OnItemCommand - raised when a child control of some item (such as a TButton) raises an
OnCommand event.

The following example shows how to use TRepeater to display tabular data.

Controls.Samples.TRepeater.Sample1 Demo

TRepeater can be used in more complex situations. As an example, we show in the following how
to use nested repeaters, i.e., repeater in repeater. This is commonly seen in presenting master-
detail data. To use a repeater within another repeater, for an item for the outer repeater is
created, we need to set the detail data source for the inner repeater. This can be achieved by
responding to the OnItemDataBound event of the outer repeater. An OnItemDataBound event is
raised each time an outer repeater item completes databinding. In the following example, we
exploit another event of repeater called OnItemCreated, which is raised each time a repeater item
(and its content) is newly created. We respond to this event by setting different background colors
for repeater items to achieve alternating item background display. This saves us from writing an
AlternatingItemTemplate for the repeaters.

Controls.Samples.TRepeater.Sample2 Demo

Besides displaying data, TRepeater can also be used to collect data from users. Validation controls
can be placed in TRepeater templates to verify that user inputs are valid.

The PRADO component composer demo is a good example of such usage. It uses a repeater to
collect the component property and event definitions. Users can also delete or adjust the order
of the properties and events, which is implemented by responding to the OnItemCommand event of
repeater.

81

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRepeater.Sample1
http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRepeater.Sample2
file:../composer/index.php

Chapter 7. Control Reference : Data Controls

See in the following yet another example showing how to use repeater to collect user inputs.

Controls.Samples.TRepeater.Sample3 Demo

82

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.TRepeater.Sample3

Chapter 8

Write New Controls

8.1 Writing New Controls

Writing new controls is often desired by advanced programmers, because they want to reuse the
code that they write for dealing with complex presentation and user interactions.

In general, there are two ways of writing new controls: composition of existing controls and ex-
tending existing controls. They all require that the new control inherit from TControl or its child
classes.

8.1.1 Composition of Existing Controls

Composition is the easiest way of creating new controls. It mainly involves instantiating existing
controls, configuring them and making them the constituent components. The properties of the
constituent components are exposed through subproperties.

One can compose a new control in two ways. One is to override the TControl::createChildControls()
method. The other is to extend TTemplateControl (or its child classes) and write a control tem-
plate. The latter is easier to use and can organize the layout constituent compoents more intuitively,
while the former is more efficient because it does not require parsing of the template.

As an example, we show how to create a labeled textbox called LabeledTextBox using the above
two approaches. A labeled textbox displays a label besides a textbox. We want reuse the PRADO

83

Chapter 8. Write New Controls

provided TLabel and TTextBox to accomplish this task.

Composition by Writing Templates

We need two files: a control class file named LabeledTextBox.php and a control template file
named LabeledTextBox.tpl. Both must reside under the same directory.

Like creating a PRADO page, we can easily write down the content in the control template file.

<com:TLabel ID="Label" ForControl="TextBox" />

<com:TTextBox ID="TextBox" />

The above template specifies a TLabel control named Label and a TTextBox control named
TextBox. We would to expose these two controls. This can be done by defining a property
for each control in the LabeledTextBox class file. For example, we can define a Label property as
follows,

class LabeledTextBox extends TTemplateControl {

public function getLabel() {

$this->ensureChildControls();

return $this->getRegisteredObject(’Label’);

}

}

In the above, the method call to ensureChildControls() ensures that both the label and the
textbox controls are created (from template) when the Label property is accessed. The TextBox

property can be implemented similarly.

Controls.Samples.LabeledTextBox1.Home Demo

Composition by Overriding createChildControls()

For a composite control as simple as LabeledTextBox, it is better to create it by extending
TControl and overriding the createChildControls() method, because it does not use tem-
plates and thus saves template parsing time. Note, the new control class must implement the
INamingContainer interface to ensure the global uniqueness of the ID of its constituent controls.

84

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.LabeledTextBox1.Home

8.1. Writing New Controls

Complete code for LabeledTextBox is shown as follows,

class LabeledTextBox extends TControl implements INamingContainer {

private $_label;

private $_textbox;

protected function createChildControls() {

$this->_label=new TLabel;

$this->_label->setID(’Label’);

// add the label as a child of LabeledTextBox

$this->getControls()->add($label);

$this->_textbox=new TTextBox;

$this->_textbox->setID(’TextBox’);

$this->_label->setForControl(’TextBox’);

// add the textbox as a child of LabeledTextBox

$this->getControls()->add($textbox);

}

public function getLabel() {

$this->ensureChildControls();

return $this->_label;

}

public function getTextBox() {

$this->ensureChildControls();

return $this->_textbox;

}

}

Controls.Samples.LabeledTextBox2.Home Demo

Using LabeledTextBox

To use LabeledTextBox control, first we need to include the corresponding class file. Then in a
page template, we can write lines like the following,

<com:LabeledTextBox ID="Input" Label.Text="Username" />

85

http://www.pradosoft.com/demos/quickstart/index.php?page=Controls.Samples.LabeledTextBox2.Home

Chapter 8. Write New Controls

In the above, Label.Text is a subproperty of LabeledTextBox, which refers to the Text property
of the Label property. For other details of using LabeledTextBox, see the above online examples.

8.1.2 Extending Existing Controls

Extending existing controls is the same as conventional class inheritance. It allows developers to
customize existing control classes by overriding their properties, methods, events, or creating new
ones.

The difficulty of the task depends on how much an existing class needs to be customized. For
example, a simple task could be to customize TLabel control, so that it displays a red label by
default. This would merely involves setting the ForeColor property to "red" in the constructor.
A difficult task would be to create controls that provide completely innovative functionalities.
Usually, this requires the new controls extend from ”low level” control classes, such as TControl

or TWebControl.

In this section, we mainly introduce the base control classes TControl and TWebControl, showing
how they can be customized. We also introduce how to write controls with specific functionalities,
such as loading post data, raising post data and databinding with data source.

Extending TControl

TControl is the base class of all control classes. Two methods are of the most importance for
derived control classes:

• addParsedObject() - this method is invoked for each component or text string enclosed
within the component tag specifying the control in a template. By default, the enclosed
components and text strings are added into the Controls collection of the control. De-
rived controls may override this method to do special processing about the enclosed content.
For example, TListControl only accepts TListItem components to be enclosed within its
component tag, and these components are added into the Items collection of TListControl.

• render() - this method renders the control. By default, it renders items in the Controls

collection. Derived controls may override this method to give customized presentation.

Other important properties and methods include:

86

8.1. Writing New Controls

• ID - a string uniquely identifying the control among all controls of the same naming container.
An automatic ID will be generated if the ID property is not set explicitly.

• UnqiueID - a fully qualified ID uniquely identifying the control among all controls on the
current page hierarchy. It can be used to locate a control in the page hierarchy by calling
TControl::findControl() method. User input controls often use it as the value of the name
attribute of the HTML input element.

• ClientID - similar to UniqueID, except that it is mainly used for presentation and is com-
monly used as HTML element id attribute value. Do not rely on the explicit format of
ClientID.

• Enabled - whether this control is enabled. Note, in some cases, if one of the control’s ancestor
controls is disabled, the control should also be treated as disabled, even if its Enabled property
is true.

• Parent - parent control of this control. The parent control is in charge of whether to render
this control and where to place the rendered result.

• Page - the page containing this control.

• Controls - collection of all child controls, including static texts between them. It can be
used like an array, as it implements Traversable interface. To add a child to the control,
simply insert it into the Controls collection at appropriate position.

• Attributes - collection of custom attributes. This is useful for allowing users to specify
attributes of the output HTML elements that are not covered by control properties.

• getViewState() and setViewState() - these methods are commonly used for defining prop-
erties that are stored in viewstate.

• saveState() and loadState() - these two methods can be overriden to provide last step
state saving and loading.

• Control lifecycles - Life page lifecycles, controls also have lifecycles. Each control under-
goes the following lifecycles in order: constructor, onInit(), onLoad(), onPreRender(),
render(), and onUnload. More details can be found in the page section.

Extending TWebControl

TWebControl is mainly used as a base class for controls representing HTML elements. It provides
a set of properties that are common among HTML elements. It breaks the TControl::render()

87

Chapter 8. Write New Controls

into the following methods that are more suitable for rendering an HTML element:

• addAttributesToRender() - adds attributes for the HTML element to be rendered. This
method is often overriden by derived classes as they usually have different attributes to be
rendered.

• renderBeginTag() - renders the openning HTML tag.

• renderContents() - renders the content enclosed within the HTML element. By default, it
displays the items in the Controls collection of the control. Derived classes may override
this method to render customized contents.

• renderEndTag() - renders the closing HTML tag.

When rendering the openning HTML tag, TWebControl calls getTagName() to obtain the tag
name. Derived classes may override this method to render different tag names.

Creating Controls with Special Functionalities

If a control wants to respond to client-side events and translate them into server side events (called
postback events), such as TButton, it has to implement the IPostBackEventHandler interface.

If a control wants to be able to load post data, such as TTextBox, it has to implement the
IPostBackDataHandler interface.

If a control wants to get data from some external data source, it can extend TDataBoundControl.
TDataBoundControl implements the basic properties and methods that are needed for populating
data via databinding. In fact, controls like TListControl, TRepeater are TDataGrid are all derived
from it.

88

Chapter 9

Advanced Topics

9.1 Authentication and Authorization

Authentication is a process of verifying whether someone is who he claims he is. It usually involves
a username and a password, but may include any other methods of demonstrating identity, such
as a smart card, fingerprints, etc.

Authorization is finding out if the person, once identified, is permitted to manipulate specific
resources. This is usually determined by finding out if that person is of a particular role that has
access to the resources.

9.1.1 How PRADO Auth Framework Works

PRADO provides an extensible authentication/authorization framework. As described in applica-
tion lifecycles, TApplication reserves several lifecycles for modules responsible for authentication
and authorization. PRADO provides the TAuthManager module for such purposes. Developers
can plug in their own auth modules easily. TAuthManager is designed to be used together with
TUserManager module, which implements a read-only user database.

When a page request occurs, TAuthManager will try to restore user information from session. If
no user information is found, the user is considered as an anonymous or guest user. To facilitate
user identity verification, TAuthManager provides two commonly used methods: login() and

89

Chapter 9. Advanced Topics

logout(). A user is logged in (verified) if his username and password entries match a record in the
user database managed by TUserManager. A user is logged out if his user information is cleared
from session and he needs to re-login if he makes new page requests.

During Authorization application lifecycle, which occurs after Authentication lifecycle, TAuthManager
will verify if the current user has access to the requested page according to a set of authorization
rules. The authorization is role-based, i.e., a user has access to a page if 1) the page explicitly
states that the user has access; 2) or the user is of a particular role that has access to the page.
If the user does not have access to the page, TAuthManager will redirect user browser to the login
page which is specified by LoginPage property.

9.1.2 Using PRADO Auth Framework

To enable PRADO auth framework, add the TAuthManager module and TUserManager module to
application configuration,

<service id="page" class="TPageService">

<modules>

<module id="auth" class="System.Security.TAuthManager"

UserManager="users" LoginPage="UserLogin" />

<module id="users" class="System.Security.TUserManager"

PasswordMode="Clear">

<user name="demo" password="demo" />

<user name="admin" password="admin" />

</module>

</modules>

</service>

In the above, the UserManager property of TAuthManager is set to the users module which
is TUserManager. Developers may replace it with a different user management module that is
derived from TUserManager.

Authorization rules for pages are specified in page configurations as follows,

<authorization>

<allow pages="PageID1,PageID2"

90

9.1. Authentication and Authorization

users="User1,User2"

roles="Role1" />

<deny pages="PageID1,PageID2"

users="?"

verb="post" />

</authorization>

An authorization rule can be either an allow rule or a deny rule. Each rule consists of four optional
properties:

• pages - list of comma-separated page names that this rule applies to. If empty or not set, this
rule will apply to all pages under the current directory and all its subdirectories recursively.

• users - list of comma-separated user names that this rule applies to. A character * refers
to all users including anonymous/guest user. And a character ? refers to anonymous/guest
user.

• roles - list of comma-separated user roles that this rule applies to.

• verb - page access method that this rule applies to. It can be either get or post. If empty
or not set, the rule applies to both methods.

When a page request is being processed, a list of authorization rules may be available. However,
only the first effective rule matching the current user will render the authorization result.

• Rules are ordered bottom-up, i.e., the rules contained in the configuration of current page
folder go first. Rules in configurations of parent page folders go after.

• A rule is effective if the current page is in the listed pages of the rule AND the current user
action (get or post) is in the listed actions.

• A rule matching occurs if the current user name is in the listed user names of an effective
rule OR if the user’s role is in the listed roles of that rule.

• If no rule matches, the user is authorized.

In the above example, anonymous users will be denied from posting to PageID1 and PageID2,
while User1 and User2 and all users of role Role1 can access the two pages (in both get and post

methods).

91

Chapter 9. Advanced Topics

9.1.3 Using TUserManager

As aforementioned, TUserManager implements a read-only user database. The user information
are specified in either application configuration or an external XML file.

We have seen in the above example that two users are specified in the application configuration.
Complete syntax of specifying the user and role information is as follows,

<user name="demo" password="demo" roles="demo,admin" />

<role name="admin" users="demo,demo2" />

where the roles attribute in user element is optional. User roles can be specified in either the
user element or in a separate role element.

9.2 Security

9.2.1 Viewstate Protection

Viewstate lies at the heart of PRADO. Viewstate represents data that can be used to restore pages
to the state that is last seen by end users before making the current request. By default, PRADO
uses hidden fields to store viewstate information.

It is extremely important to ensure that viewstate is not tampered by end users. Without protec-
tion, malicious users may inject harmful code into viewstate and unwanted instructions may be
performed when page state is being restored on server side.

To prevent viewstate from being tampered, PRADO enforces viewstate HMAC (Keyed-Hashing
for Message Authentication) check before restoring viewstate. Such a check can detect if the
viewstate has been tampered or not by end users. Should the viewstate is modified, PRADO will
stop restoring the viewstate and return an error message.

HMAC check requires a private key that should be secret to end users. Developers can either
manually specify a key or let PRADO automatically generate a key. Manually specified key is
useful when the application runs on a server farm. To do so, configure TSecurityManager in
application configuration,

<modules>

92

9.2. Security

<module id="security"

class="TSecurityManager"

ValidationKey="my private key" />

</modules>

HMAC check does not prevent end users from reading the viewstate content. An added security
measure is to encrypt the viewstate information so that end users cannot decipher it. To enable
viewstate encryption, set the EnableStateEncryption of pages to true. This can be done in
page configurations or in page code. Note, encrypting viewstate may degrade the application
performance. A better strategy is to store viewstate on the server side, rather than the default
hidden field.

9.2.2 Cross Site Scripting Prevention

Cross site scripting (also known as XSS) occurs when a web application gathers malicious data
from a user. Often attackers will inject JavaScript, VBScript, ActiveX, HTML, or Flash into a
vulnerable application to fool other application users and gather data from them. For example,
a poorly design forum system may display user input in forum posts without any checking. An
attacker can then inject a piece of malicious JavaScript code into a post so that when other users
read this post, the JavaScript runs unexpectedly on their computers.

One of the most important measures to prevent XSS attacks is to check user input before displaying
them. One can do HTML-encoding with the user input to achieve this goal. However, in some
situations, HTML-encoding may not be preferrable because it disables all HTML tags.

PRADO incorporates the work of SafeHTML and provides developers with a useful component
called TSafeHtml. By enclosing content within a TSafeHtml component tag, the enclosed content
are ensured to be safe to end users. In addition, the commonly used TTextBox has a SafeText

property which contains user input that are ensured to be safe if displayed directly to end users.

9.2.3 Cookie Attack Prevention

Protecting cookies from being attacked is of extreme important, as session IDs are commonly stored
in cookies. If one gets hold of a session ID, he essentially owns all relevant session information.

There are several countermeasures to prevent cookies from being attacked.

93

http://pixel-apes.com/safehtml/

Chapter 9. Advanced Topics

• An application can use SSL to create a secure communication channel and only pass the
authentication cookie over an HTTPS connection. Attackers are thus unable to decipher the
contents in the transferred cookies.

• Expire sessions appropriately, including all cookies and session tokens, to reduce the likelihood
of being attacked.

• Prevent cross-site scripting (XSS) which causes arbitrary code to run in a user’s browser and
expose his cookies.

• Validate cookie data and detect if they are altered.

Prado implements a cookie validation scheme that prevents cookies from being modified. In par-
ticular, it does HMAC check for the cookie values if cookie validation is enable.

Cookie validation is disabled by default. To enable it, configure the THttpRequest module as
follows,

<modules>

<module id="request" class="THttpRequest" EnableCookieValidation="true" />

</modules>

To make use of cookie validation scheme provided by Prado, you also need to retrieve cookies
through the Cookies collection of THttpRequest by using the following PHP statements,

foreach($this->Request->Cookies as $cookie)

// $cookie is of type THttpCookie

To send cookie data encoded with validation information, create new THttpCookie objects and
add them to the Cookies collection of THttpResponse,

$cookie=new THttpCookie($name,$value);

$this->Response->Cookies[]=$cookie;

9.3 Assets

Assets are resource files (such as images, sounds, videos, CSS stylesheets, javascripts, etc.) that
belong to specific component classes. Assets are meant to be provided to Web users. For better

94

9.3. Assets

reusability and easier deployment of the corresponding component classes, assets should reside
together with the component class files . For example, a toggle button may use two images, stored
in file down.gif and up.gif, to show different toggle states. If we require the image files be stored
under images directory under the Web server document root, it would be inconvenient for the
users of the toggle button component, because each time they develop or deploy a new application,
they would have to manually copy the image files to that specific directory. To eliminate this
requirement, a directory relative to the component class file should be used for storing the image
files. A common strategy is to use the directory containing the component class file to store the
asset files.

Because directories containing component class files are normally inaccessible by Web users, PRADO
implements an asset publishing scheme to make available the assets to Web users. An asset, after
being published, will have a URL by which Web users can retrieve the asset file.

9.3.1 Asset Publishing

PRADO provides several methods for publishing assets or directories containing assets:

• In a template file, you can use asset tags to publish assets and obtain their URLs. Note, the
assets must be relative to the directory containing the template file.

• In PHP code, you can call $object->publishAsset($assetPath) to publish an asset and
obtain its URL. Here, $object refers to an instance of TApplicationComponent or derived
class, and $assetPath is a file or directory relative to the directory containing the class file.

• If you want to publish an arbitrary asset, you need to call TAssetManager::publishFilePath($path).

BE AWARE: Be very careful with assets publishing, because it gives Web users access to files that
were previously inaccessible to them. Make sure that you do not publish files that do not want
Web users to see.

9.3.2 Customization

Asset publishing is managed by the System.Web.TAssetManager module. By default, all published
asset files are stored under the [AppEntryPath]/assets directory, where AppEntryPath refers to
the directory containing the application entry script. Make sure the assets directory is writable

95

Chapter 9. Advanced Topics

by the Web server process. You may change this directory to another by configuring the BasePath
and BaseUrl properties of the TAssetManager module in application configuration,

<modules>

<module id="asset"

class="System.Web.TAssetManager"

BasePath="Web.images"

BaseUrl="images" />

</modules>

9.3.3 Performance

PRADO uses caching techniques to ensure the efficiency of asset publishing. Publishing an asset
essentially requires file copy operation, which is expensive. To save unnecessary file copy operations,
System.Web.TAssetManager only publishes an asset when it has a newer file modification time
than the published file. When an application runs under the Performance mode, such timestamp
checkings are also omitted.

ADVISORY: Do not overuse asset publishing. The asset concept is mainly used to help better reuse
and redistribute component classes. Normally, you should not use asset publishing for resources
that are not bound to any component in an application. For example, you should not use asset
publishing for images that are mainly used as design elements (e.g. logos, background images,
etc.) Let Web server to directly serve these images will help improve the performance of your
application.

9.3.4 A Toggle Button Example

We now use the toggle button example to explain the usage of assets. The control uses two image
files up.gif and down.gif, which are stored under the directory containing the control class file.
When the button is in Up state, we would like to show the up.gif image. This can be done as
follows,

class ToggleButton extends TWebControl {

...

protected function addAttributesToRender($writer) {

96

9.4. Master and Content

...

if($this->getState()===’Up’) {

$url=$this->getAsset(’up.gif’);

$writer->addAttribute(’src’,$url);

}

...

}

...

}

In the above, the call $this->getAsset(’up.gif’) will publish the up.gif image file and return
a URL for the published image file. The URL is then rendered as the src attribute of the HTML
image tag.

To redistribute ToggleButton, simply pack together the class file and the image files. Users of
ToggleButton merely need to unpack the file, and they can use it right away, without worrying
about where to copy the image files to.

9.4 Master and Content

Pages in a Web application often share common portions. For example, all pages of this tutorial
application share the same header and footer portions. If we repeatedly put header and footer in
every page source file, it will be a maintenance headache if in future we want to something in the
header or footer. To solve this problem, PRADO introduces the concept of master and content. It
is essentially a decorator pattern, with content being decorated by master.

Master and content only apply to template controls (controls extending TTemplateControl or its
child classes). A template control can have at most one master control and one or several contents
(each represented by a TContent control). Contents will be inserted into the master control at
places reserved by TContentPlaceHolder controls. And the presentation of the template control
is that of the master control with TContentPlaceHolder replaced by TContent.

For example, assume a template control has the following template:

<%@ MasterClass="MasterControl" %>

<com:TContent ID="A" >

97

Chapter 9. Advanced Topics

content A

</com:TContent >

<com:TContent ID="B" >

content B

</com:TContent >

<com:TContent ID="B" >

content B

</com:TContent >

which uses MasterControl as its master control. The master control has the following template,

other stuff

<com:TContentPlaceHolder ID="A" />

other stuff

<com:TContentPlaceHolder ID="B" />

other stuff

<com:TContentPlaceHolder ID="C" />

other stuff

Then, the contents are inserted into the master control according to the following diagram, while
the resulting parent-child relationship can be shown in the next diagram. Note, the template
control discards everything in the template other than the contents, while the master control keeps
everything and replaces the content placeholders with the contents according to ID matching.

98

9.5. Themes and Skins

9.5 Themes and Skins

9.5.1 Introduction

Themes in Prado provide a way for developers to provide a consistent look-and-feel across an
entire web application. A theme contains a list of initial values for properties of various control
types. When applying a theme to a page, all controls on that page will receive the corresponding
initial property values from the theme. This allows themes to interact with the rich property sets
of the various PRADO controls, meaning that themes can be used to specify a large range of
presentational properties that other theming methods (e.g. CSS) cannot. For example, themes
could be used to specify the default page size of all data grids across an application by specifying
a default value for the PageSize property of the TDataGrid control.

9.5.2 Understanding Themes

A theme is a directory consists of skin files, javascript files and CSS files. Any javascript or CSS
files contained in a theme will be registered with the page that the theme is applied to. A skin is a
set of initial property values for a particular control type. A control type may have one or several
skins, each identified by a unqiue SkinID. When applying a theme to a page, a skin is applied to
a control if the control type and the SkinID value both match to those of the skin. Note, if a skin
has an empty SkinID value, it will apply to all controls of the particular type whose SkinID is not
set or empty. A skin file consists of one or several skins, for one or several control types. A theme
is the union of skins defined in all skin files.

99

Chapter 9. Advanced Topics

9.5.3 Using Themes

To use a theme, you need to set the Theme property of the page with the theme name, which is
the theme directory name. You may set it in either page configurations or in the constructor or
onPreInit() method of the page. You cannot set the property after onPreInit() because by that
time, child controls of the page are already created (skins must be applied to controls right after
they are created.)

To use a particular skin in the theme for a control, set SkinID property of the control in template
like following,

<com:TButton SkinID="Blue" ... />

This will apply the ’Blue’ skin to the button. Note, the initial property values specified by the
’Blue’ skin will overwrite any existing property values of the button. Use stylesheet theme if you
do not want them to be overwritten. To use stylesheet theme, set the StyleSheetTheme property
of the page instead of Theme (you can have both StyleSheetTheme and Theme).

To use the javascript files and CSS files contained in a theme, a THead control must be placed on
the page template. This is because the theme will register those files with the page and THead is
the right place to load those files.

9.5.4 Theme Storage

All themes by default must be placed under the [AppEntryPath]/themes directory, where AppEntryPath
refers to the directory containing the application entry script. If you want to use a different di-
rectory, configure the BasePath and BaseUrl properties of the System.Web.UI.TThemeManager

module in application configuration,

<service id="page" class="TPageService">

<modules>

<module id="theme"

class="System.Web.UI.TThemeManager"

BasePath="mythemes"

BaseUrl="mythemes" />

</modules>

</service>

100

9.6. Persistent State

9.5.5 Creating Themes

Creating a theme involves creating the theme directory and writing skin files (and possibly javascript
and CSS files). The name of skin files must be terminated with .skin. The format of skin files are
the same as that of control template files. Since skin files do not define parent-child presentational
relationship among controls, you cannot place a component tag within another. And any static
texts between component tags are discarded. To define the aforementioned ’Blue’ skin for TButton,
write the following in a skin file,

<com:TButton SkinID="Blue" BackColor="blue" />

As aforementioned, you can put several skins within a single skin file, or split them into several
files. A commonly used strategy is that each skin file only contains skins for one type of controls.
For example, Button.skin would contain skins only for the TButton control type.

9.6 Persistent State

Web applications often need to remember what an end user has done in previous page requests so
that the new page request can be served accordingly. State persistence is to address this problem.
Traditionally, if a page needs to keep track of user interactions, it will resort to session, cookie,
or hidden fields. PRADO provides a new line of state persistence schemes, including view state,
control state, and application state.

9.6.1 View State

View state lies at the heart of PRADO. With view state, Web pages become stateful and are
capable of restoring pages to the state that end users interacted with before the current page
request. Web programming thus resembles to Windows GUI programming, and developers can
think continuously without worrying about the roundtrips between end users and the Web server.
For example, with view state, a textbox control is able to detect if the user input changes the
content in the textbox.

View state is only available to controls. View state of a control can be disabled by setting its
EnableViewState property to false. To store a variable in view state, call the following,

101

Chapter 9. Advanced Topics

$this->setViewState(’Caption’,$caption);

where $this refers to the control object, Caption is a unique key identifying the $caption variable
stored in viewstate. To retrieve the variable back from view state, call the following,

$caption = $this->getViewState(’Caption’);

9.6.2 Control State

Control state is like view state in every aspect except that control state cannot be disabled. Control
state is intended to be used for storing crucial state information without which a page or control
may not work properly.

To store and retrieve a variable in control state, use the followign commands,

$this->setControlState(’Caption’,$caption);

$caption = $this->getControlState(’Caption’);

9.6.3 Application State

Application state refers to data that is persistent across user sessions and page requests. A typical
example of application state is the user visit counter. The counter value is persistent even if the
current user session terminates. Note, view state and control state are lost if the user requests for
a different page, while session state is lost if the user session terminates.

To store and retrieve a variable in application state, use the followign commands,

$application->setGlobalState(’Caption’,$caption);

$caption = $application->getGlobalState(’Caption’);

9.6.4 Session State

PRADO encapsulates the traditional session management in THttpSession module. The module
can be accessed from within any component by using $this->Session, where $this refers to the
component object.

102

9.7. Logging

9.7 Logging

PRADO provides a highly flexible and extensible logging functionality. Messages logged can be
classified according to log levels and message categories. Using level and category filters, the
messages can be further routed to different destinations, such as files, emails, browser windows,
etc. The following diagram shows the basic architecture of PRADO logging mechanism,

9.7.1 Using Logging Functions

The following two methods are provided for logging messages in PRADO,

Prado::log($message, $logLevel, $category);

Prado::trace($message, $category);

The difference between Prado::log() and Prado::trace() is that the latter automatically selects
the log level according to the application mode. If the application is in Debug mode, stack trace
information is appended to the messages. Prado::trace() is widely used in the core code of the
PRADO framework.

9.7.2 Message Routing

Messages logged using the above two functions are kept in memory. To make use of the messages,
developers need to route them to specific destinations, such as files, emails, or browser windows.
The message routing is managed by System.Util.TLogRouter module. When plugged into an

103

Chapter 9. Advanced Topics

application, it can route the messages to different destination in parallel. Currently, PRADO
provides three types of routes:

• TFileLogRoute - filtered messages are stored in a specified log file. By default, this file is
named prado.log under the runtime directory of the application. File rotation is provided.

• TEmailLogRoute - filtered messages are sent to pre-specified email addresses.

• TBrowserLogRoute - filtered messages are appended to the end of the current page output.

To enable message routing, plug in and configure the TLogRouter module in application configu-
ration,

<module id="log" class="System.Util.TLogRouter">

<route class="TBrowserLogRoute"

Levels="Info"

Categories="System.Web.UI.TPage, System.Web.UI.WebControls" />

<route class="TFileLogRoute"

Levels="Warning, Error"

Categories="System.Web" />

</module>

In the above, the Levels and Categories specify the log and category filters to selectively retrieve
the messages to the corresponding destinations.

9.7.3 Message Filtering

Messages can be filtered according to their log levels and categories. Each log message is associated
with a log level and a category. With levels and categories, developers can selectively retrieve
messages that they are interested on.

Log levels defined in System.Util.TLogger include : DEBUG, INFO, NOTICE, WARNING, ERROR, ALERT,
FATAL. Messages can be filtered according log level criteria. For example, if a filter specifies WARNING
and ERROR levels, then only those messages that are of WARNING and ERROR will be returned.

Message categories are hierarchical. A category whose name is the prefix of another is said to be
the ancestor category of the other category. For example, System.Web category is the ancestor

104

9.8. Internationalization (I18N) and Localization (L10N)

of System.Web.UI and System.Web.UI.WebControls categories. Messages can be selectively re-
trieved using such hierarchical category filters. For example, if the category filter is System.Web,
then all messages in the System.Web are returned. In addition, messages in the childd categories,
such as System.Web.UI.WebControls, are also returned.

By convention, the messages logged in the core code of PRADO are categorized according to the
namespace of the corresponding classes. For example, messsages logged in TPage will be of category
System.Web.UI.TPage.

9.8 Internationalization (I18N) and Localization (L10N)

Many web application built with PHP will not have internationalization in mind when it was first
written. It may be that it was not intended for use in languages and cultures. Internationalization
is an important aspect due to the increase adoption of the Internet in many non-English speaking
countries. The process of internationalization and localization will contain difficulties. Below are
some general guidelines to internationalize an existing application.

9.8.1 Separate culture/locale sensitive data

Identify and separate data that varies with culture. The most obvious are text/string/message.
Other type of data should also be considered. The following list categorize some examples of
culture sensitive data

• Strings, Messages, Text, in relatively small units (e.g. phrases, sentences, paragraphs, but
not the full text of a book).

• Labels on buttons.

• Help files, large units of text, static text.

• Sounds.

• Colors.

• Graphics,Icons.

• Dates, Times.

105

Chapter 9. Advanced Topics

• Numbers, Currency, Measurements.

• Phone numbers.

• Honorifics and personal titles.

• Postal address.

• Page layout.

If possible all manner of text should be isolated and store in a persistence format. These text
include, application error messages, hard coded strings in PHP files, emails, static HTML text,
and text on form elements (e.g. buttons).

9.8.2 Configuration

To enable the localization features in Prado, you need to add a few configuration options in your
application configuration. First you need to include the System.I18N.* namespace to your paths.

<paths>

<using namespace="System.I18N.*" />

</paths>

Then, if you wish to translate some text in your application, you need to add one translation
message data source.

<module id="globalization" class="TGlobalization">

<translation type="XLIFF"

source="MyApp.messages"

autosave="true" cache="true" />

</module>

Where source in translation is the dot path to a directory where you are going to store your
translate message catalogue. The autosave attribute if enabled, saves untranslated messages back
into the message catalogue. With cache enabled, translated messages are saved in the application
runtime/i18n directory.

106

9.8. Internationalization (I18N) and Localization (L10N)

With the configuration complete, we can now start to localize your application. If you have
autosave enabled, after running your application with some localization activity (i.e. translating
some text), you will see a directory and a messages.xml created within your source directory.

9.8.3 What to do with messages.xml?

The translation message catalogue file, if using type="XLIFF", is a standardized translation mes-
sage interchange XML format. You can edit the XML file using any UTF-8 aware editor. The
format of the XML is something like the following.

<?xml version="1.0"?>

<xliff version="1.0">

<file original="I18N Example IndexPage"

source-language="EN"

datatype="plaintext"

date="2005-01-24T11:07:53Z">

<body>

<trans-unit id="1">

<source>Hello world.</source>

<target>Hi World!!!</target>

</trans-unit>

</body>

</file>

</xliff>

Each translation message is wrapped within a trans-unit tag, where source is the original mes-
sage, and target is the translated message. Editors such as Heartsome XLIFF Translation Editor
can help in editing these XML files.

9.8.4 Setting and Changing Culture

Once globalization is enabled, you can access the globalization settings, such as, Culture, Charset,
etc, using

107

http://www.heartsome.net/EN/xlfedit.html

Chapter 9. Advanced Topics

$globalization = $this->getApplication()->getGlobalization();

echo $globalization->Culture;

$globalization->Charset= "GB-2312"; //change the charset

You also change the way the culture is determined by changing the class attribute in the module
configuration. For example, to set the culture that depends on the browser settings, you can use
the TGlobalizationAutoDetect class.

<module id="globalization" class="TGlobalizationAutoDetect">

...

</module>

You may also provide your own globalization class to change how the application culture is set.
Lastly, you can change the globalization settings on page by page basis using template control
tags. For example, changing the Culture to ”zh”.

<%@ Application.Globalization.Culture="zh" %>

9.8.5 Localizing your Prado application

There are two areas in your application that may need message or string localization, in PHP code
and in the templates. To localize strings within PHP, use the localize function detailed below.
To localize text in the template, use the TTranslate component.

9.8.6 Using localize function to translate text within PHP

The localize function searches for a translated string that matches original from your translation
source. First, you need to locate all the hard coded text in PHP that are displayed or sent to the
end user. The following example localizes the text of the $sender (assuming, say, the sender is a
button). The original code before localization is as follows.

function clickMe($sender,$param)

{

$sender->Text="Hello, world!";

}

108

9.8. Internationalization (I18N) and Localization (L10N)

The hard coded message ”Hello, world!” is to be localized using the localize function.

function clickMe($sender,$param)

{

$sender->Text=Prado::localize("Hello, world!");

}

9.8.7 Compound Messages

Compound messages can contain variable data. For example, in the message ”There are 12 users
online.”, the integer 12 may change depending on some data in your application. This is difficult
to translate because the position of the variable data may be difference for different languages.
In addition, different languages have their own rules for plurals (if any) and/or quantifiers. The
following example can not be easily translated, because the sentence structure is fixed by hard
coding the variable data within message.

$num_users = 12;

$message = "There are " . $num_users . " users online.";

This problem can be solved using the localize function with string substitution. For example,
the $message string above can be constructed as follows.

$num_users = 12;

$message = Prado::localize("There are {num_users} users online.", array(’num_users’=>$num_users));

Where the second parameter in localize takes an associative array with the key as the substitution
to find in the text and replaced it with the associated value. The localize function does not solve
the problem of localizing languages that have plural forms, the solution is to use TChoiceFormat.

The following sample demonstrates the basics of localization in Prado. Advanced.Samples.I18N.Home
Demo

109

http://www.pradosoft.com/demos/quickstart/index.php?page=Advanced.Samples.I18N.Home
http://www.pradosoft.com/demos/quickstart/index.php?page=Advanced.Samples.I18N.Home

Chapter 9. Advanced Topics

9.9 I18N Components

9.9.1 TTranslate

Messages and strings can be localized in PHP or in templates. To translate a message or string in
the template, use TTranslate.

<com:TTranslate>Hello World</com:TTranslate>

<com:TTranslate Text="Goodbye" />

TTranslate can also perform string substitution. Any attributes of TTranslate will be substituted
with {attribute name} in the translation. E.g.

<com:TTranslate time="late">

The time is {time}.

</com:TTranslate>

A short for TTranslate is also provided using the following syntax.

<%[string]%>

where string will be translated to different languages according to the end-user’s language prefer-
ence. This syntax can be used with attribute values as well.

<com:TLabel Text="<%[Hello World!]%>" />

9.9.2 TDateFormat

Formatting localized date and time is straight forward.

<com:TDateFormat Value="12/01/2005" />

The Pattern property accepts 4 predefined localized date patterns and 4 predefined localized time
patterns.

110

9.9. I18N Components

• fulldate

• longdate

• mediumdate

• shortdate

• fulltime

• longtime

• mediumtime

• shorttime

The predefined can be used in any combination. If using a combined predefined pattern, the first
pattern must be the date, followed by a space, and lastly the time pattern. For example, full date
pattern with short time pattern. The actual ordering of the date-time and the actual pattern will
be determine automatically from locale data specified by the Culture property.

<com:TDateFormat Pattern="fulldate shorttime" />

You can also specify a custom pattern using the following sub-patterns. The date/time format
is specified by means of a string time pattern. In this pattern, all ASCII letters are reserved as
pattern letters, which are defined as the following:

Symbol Meaning Presentation Example

------ ------- ------------ -------

G era designator (Text) AD

y year (Number) 1996

M month in year (Text & Number) July & 07

d day in month (Number) 10

h hour in am/pm (1~12) (Number) 12

H hour in day (0~23) (Number) 0

m minute in hour (Number) 30

s second in minute (Number) 55

E day of week (Text) Tuesday

D day in year (Number) 189

111

Chapter 9. Advanced Topics

F day of week in month (Number) 2 (2nd Wed in July)

w week in year (Number) 27

W week in month (Number) 2

a am/pm marker (Text) PM

k hour in day (1~24) (Number) 24

K hour in am/pm (0~11) (Number) 0

z time zone (Time) Pacific Standard Time

’ escape for text (Delimiter) ’Date=’

’’ single quote (Literal) ’o’’clock’

The count of pattern letters determine the format.

(Text): 4 letters uses full form, less than 4, use short or abbreviated form if it exists. (e.g., ”EEEE”
produces ”Monday”, ”EEE” produces ”Mon”)

(Number): the minimum number of digits. Shorter numbers are zero-padded to this amount (e.g.
if ”m” produces ”6”, ”mm” produces ”06”). Year is handled specially; that is, if the count of ’y’
is 2, the Year will be truncated to 2 digits. (e.g., if ”yyyy” produces ”1997”, ”yy” produces ”97”.)
Unlike other fields, fractional seconds are padded on the right with zero.

(Text and Number): 3 or over, use text, otherwise use number. (e.g., ”M” produces ”1”, ”MM”
produces ”01”, ”MMM” produces ”Jan”, and ”MMMM” produces ”January”.)

Any characters in the pattern that are not in the ranges of [’a’..’z’] and [’A’..’Z’] will be treated as
quoted text. For instance, characters like ’:’, ’.’, ’ ’, and ’@’ will appear in the resulting time text
even they are not embraced within single quotes.

Examples using the US locale:

Format Pattern Result

-------------- -------

"yyyy.MM.dd G ’at’ HH:mm:ss" ->> 1996.07.10 AD at 15:08:56

"EEE, MMM d, ’’yy" ->> Wed, Jul 10, ’96

"h:mm a" ->> 12:08 PM

"hh ’o’’clock’ a, z" ->> 12 o’clock PM, Pacific Daylight Time

"K:mm a" ->> 0:00 PM

"yyyy.MMMM.dd G hh:mm a" ->> 1996.July.10 AD 12:08 PM

If the Value property is not specified, the current date and time is used.

112

9.9. I18N Components

9.9.3 TNumberFormat

PRADO’s Internationalization framework provide localized currency formatting and number for-
matting. Please note that the TNumberFormat component provides formatting only, it does not
perform current conversion or exchange.

Numbers can be formatted as currency, percentage, decimal or scientific numbers by specifying the
Type attribute. The valid types are:

• currency

• percentage

• decimal

• scientific

<com:TNumberFormat Type="currency" Value="100" />

Culture and Currency properties may be specified to format locale specific numbers.

If someone from US want to see sales figures from a store in Germany (say using the EURO cur-
rency), formatted using the german currency, you would need to use the attribute Culture="de DE"

to get the currency right, e.g. 100,00$. The decimal and grouping separator is then also from the
de DE locale. This may lead to some confusion because people from US uses the ”,” (comma)
as thousand separator. Therefore a Currency attribute is available, so that the output from the
following example results in $100.00

<com:TNumberFormat Type="currency"

Culture="en_US" Currency="EUR" Value="100" />

The Pattern property determines the number of digits, thousand grouping positions, the number
of decimal points and the decimal position. The actual characters that are used to represent the
decimal points and thousand points are culture specific and will change automatically according
to the Culture property. The valid Pattern characters are:

• # (hash) - represents the optional digits

• 0 (zero) - represents the mandatory digits, zero left filled

113

Chapter 9. Advanced Topics

• . (full stop) - the position of the decimal point (only 1 decimal point is allowed)

• , (comma) - thousand point separation (up to 2 commas are allowed)

For example, consider the Value="1234567.12345" and with Culture="en US" (which uses ”,”
for thousand point separator and ”.” for decimal separators).

Pattern Output

------- ------

##,###.00 ->> 1,234,567.12

##,###.## ->> 1,234,567.12345

##,##.0000 ->> 1,23,45,67.1235

##,###,##.0 ->> 12,345,67.1

000,000,000.0 ->> 001,234,567.1

9.9.4 TTranslateParameter

Compound messages, i.e., string substitution, can be accomplished with TTranslateParameter.
In the following example, the strings ”{greeting}” and ”{name}” will be replace with the values of
”Hello” and ”World”, respectively.The substitution string must be enclose with ”{” and ”}”. The
parameters can be further translated by using TTranslate.

<com:TTranslate>

{greeting} {name}!

<com:TTranslateParameter Key="name">World</com:TTranslateParameter>

<com:TTranslateParameter Key="greeting">Hello</com:TTranslateParameter>

</com:TTranslate>

9.9.5 TChoiceFormat

Using the localize function or TTranslate component to translate messages does not inform
the translator the cardinality of the data required to determine the correct plural structure to
use. It only informs them that there is a variable data, the data could be anything. Thus, the
translator will be unable to determine with respect to the substitution data the correct plural,
language structure or phrase to use . E.g. in English, to translate the sentence, ”There are number
of apples.”, the resulting translation should be different depending on the number of apples.

114

9.10. Error Handling and Reporting

The TChoiceFormat component performs message/string choice translation. The following exam-
ple demonstrated a simple 2 choice message translation.

<com:TChoiceFormat Value="1"/>[1] One Apple. |[2] Two Apples</com:TChoiceFormat>

In the above example, the Value ”1” (one), thus the translated string is ”One Apple”. If the Value
was ”2”, then it will show ”Two Apples”.

The message/string choices are separated by the pipe ”—” followed by a set notation of the form.

• [1,2] – accepts values between 1 and 2, inclusive.

• (1,2) – accepts values between 1 and 2, excluding 1 and 2.

• {1,2,3,4} – only values defined in the set are accepted.

• [-Inf,0) – accepts value greater or equal to negative infinity and strictly less than 0

Any non-empty combinations of the delimiters of square and round brackets are acceptable. The
string chosen for display depends on the Value property. The Value is evaluated for each set until
the Value is found to belong to a particular set.

9.10 Error Handling and Reporting

PRADO provides a complete error handling and reporting framework based on the PHP 5 exception
mechanism.

9.10.1 Exception Classes

Errors occur in a PRADO application may be classified into three categories: those caused by
PHP script parsing, those caused by wrong code (such as calling an undefined function, setting
an unknown property), and those caused by improper use of the Web application by client users
(such as attempting to access restricted pages). PRADO is unable to deal with the first category
of errors because they cannot be caughted in PHP code. PRADO provides an exception hierarchy
to deal with the second and third categories.

115

Chapter 9. Advanced Topics

All errors in PRADO applications are represented as exceptions. The base class for all PRADO
exceptions is TException. It provides the message internationalization functionality to all system
exceptions. An error message may be translated into different languages according to the user
browser’s language preference.

Exceptions raised due to improper usage of the PRADO framework inherit from TSystemException,
which can be one of the following exception classes:

• TConfigurationException - improper configuration, such as error in application configura-
tion, control templates, etc.

• TInvalidDataValueException - data value is incorrect or unexpected.

• TInvalidDataTypeException - data type is incorrect or unexpected.

• TInvalidDataFormatException - format of data is incorrect.

• TInvalidOperationException - invalid operation request.

• TPhpErrorException - caughtable PHP errors, warnings, notices, etc.

• TSecurityException - errors related with security.

• TIOException - IO operation error, such as file open failure.

• TDBException - errors related with database operations.

• TNotSupportedException - errors caused by requesting for unsupported feature.

• THttpException - errors to be displayed to Web client users.

Errors due to improper usage of the Web application by client users inherit from TApplicationException.

9.10.2 Raising Exceptions

Raising exceptions in PRADO has no difference than raising a normal PHP exception. The only
thing matters is to raise the right exception. In general, exceptions meant to be shown to appli-
cation users should use THttpException, while exceptions shown to developers should use other
exception classes.

116

9.10. Error Handling and Reporting

9.10.3 Error Capturing and Reporting

Exceptions raised during the runtime of PRADO applications are captured by System.Exceptions.TErrorHandler

module. Different output templates are used to display the captured exceptions. THttpException
is assumed to contain error messages that are meant for application end users and thus uses a
specific group of templates. For all other exceptions, a common template shown as follows is used
for presenting the exceptions.

9.10.4 Customizing Error Display

Developers can customize the presentation of exception messages. By default, all error output
templates are stored under framework/Exceptions/templates. The location can be changed by
configuring TErrorHandler in application configuration,

<module id="error"

class="TErrorHandler"

ErrorTemplatePath="Application.ErrorTemplates" />

THttpException uses a set of templates that are differentiated according to different StatusCode
property value of THttpException. StatusCode has the same meaning as the status code in HTTP
protocol. For example, a status code equal to 404 means the requested URL is not found on the
server. The StatusCode value is used to select which output template to use. The output template
files use the following naming convention:

error<status code>-<language code>.html

117

file:<%~ exception2.gif %>

Chapter 9. Advanced Topics

where status code refers to the StatusCode property value of THttpException, and language

code must be a valid language such as en, zh, fr, etc. When a THttpException is raised, PRADO
will select an appropriate template for displaying the exception message. PRADO will first locate
a template file whose name contains the status code and whose language is preferred by the client
browser window. If such a template is not present, it will look for a template that has the same
status code but without language code.

The naming convention for the template files used for all other exceptions is as follows,

exception-<language code>.html

Again, if the preferred language is not found, PRADO will try to use exception.html, instead.

CAUTION: When saving a template file, please make sure the file is saved using UTF-8 encoding.
On Windows, you may use Notepad.exe to accomplish such saving.

9.11 Performance Tuning

Performance of Web applications is affected by many factors. Database access, file system opera-
tions, network bandwidth are all potential affecting factors. PRADO tries in every effort to reduce
the performance impact caused by the framework.

9.11.1 Caching

PRADO provides a generic caching technique used by in several core parts of the framework. For
example, when caching is enabled, TTemplateManager will save parsed templates in cache and
reuse them in the following requests, which saves time for parsing templates. The TThemeManager

adopts the similar strategy to deal with theme parsing.

Enabling caching is very easy. Simply add the cache module in the application configuration, and
PRADO takes care of the rest.

<modules>

<module id="cache" class="System.Caching.TSqliteCache" />

</modules>

118

9.11. Performance Tuning

Developers can also take advantage of the caching technique in their applications. The Cache

property of TApplication returns the plugged-in cache module when it is available. To save and
retrieve a data item in cache, use the following commands,

if($application->Cache) {

// saves data item in cache

$application->Cache->set($keyName,$dataItem);

// retrieves data item from cache

$dataItem=$application->Cache->get($keyName);

}

where $keyName should be a string that uniquely identifies the data item stored in cache.

9.11.2 Using pradolite.php

Including many PHP script files may impact application performance significantly. PRADO classes
are stored in different files and when processing a page request, it may require including tens of
class files.To alleviate this problem, in each PRADO release, a file named pradolite.php is also
included. The file is a merge of all core PRADO class files with comments being stripped off and
message logging removed.

To use pradolite.php, in your application entry script, replace the inclusion of prado.php with
pradolite.php.

9.11.3 Changing Application Mode

Application mode also affects application performance. A PRADO application can be in one of
the following modes: Off, Debug, Normal and Performance. The Debug mode should mainly be
used during application development, while Normal mode is usually used in early stage after an
application is deployed to ensure everything works correctly. After the application is proved to
work stably for some period, the mode can be switched to Performance to further improve the
performance.

The difference between Debug, Normal and Performance modes is that under Debug mode, appli-
cation logs will contain debug information, and under Performance mode, timestamp checking is
not performed for cached templates and published assets. Therefore, under Performance mode,

119

Chapter 9. Advanced Topics

application may not run properly if templates or assets are modified. Since Performance mode is
mainly used when an application is stable, change of templates or assets are not likely.

To switch application mode, configure it in application configuration:

<application Mode="Performance" >

......

</application >

9.11.4 Reducing Page Size

By default, PRADO stores page state in hidden fields of the HTML output. The page state could
be very large in size if complex controls, such as TDataGrid, is used. To reduce the size of the
network transmitted page size, two strategies can be used.

First, you may disable viewstate by setting EnableViewState to false for the page or some controls
on the page if they do not need user interactions. Viewstate is mainly used to keep track of page
state when a user interacts with that page/control.

Second, you may use a different page state storage. For example, page state may be stored in ses-
sion, which essentially stores page state on the server side and thus saves the network transmission
time. The StatePersisterClass property of the page determines which state persistence class to
use. By default, it uses System.Web.UI.TPageStatePersister to store persistent state in hidden
fields. You may modify this property to a persister class of your own, as long as the new persister
class implements the IPageStatePersister interface. You may configure this property in several
places, such as application configuration or page configuration using ¡pages¿ or ¡page¿ tags,

<pages StatePersisterClass="MyPersister1" ... >

<page ID="SpecialPage" StatePersisterClass="MyPersister2" ... />

</pages>

Note, in the above the SpecialPage will use MyPersister2 as its persister class, while the rest
pages will use MyPersister1. Therefore, you can have different state persister strategies for
different pages.

120

9.11. Performance Tuning

9.11.5 Other Techniques

Server caching techniques are proven to be very effective in improving the performance of PRADO
applications. For example, we have observed that by using Zend Optimizer, the RPS (request per
second) of a PRADO application can be increased by more than ten times. Of course, this is at
the cost of stale output, while PRADO’s caching techniques always ensure the correctness of the
output.

121

	Contents
	Preface
	License
	Getting Started
	Welcome to the PRADO QuickStart Tutorial
	What is PRADO?
	Why PRADO?
	What Is PRADO Best For?
	How Is PRADO Compared with Other Frameworks?
	History of PRADO

	Installing PRADO
	My First PRADO Application
	Upgrading from v2.x and v1.x
	Component Definition
	Application Controller
	Pages
	Control Relationship
	Template Syntax
	Theme Syntax

	Fundamentals
	Architecture
	Components
	Component Properties
	Component Events
	Namespaces
	Component Instantiation

	Controls
	Control Tree
	Control Identification
	Naming Containers
	ViewState and ControlState

	Pages
	PostBack
	Page Lifecycles

	Modules
	Request Module
	Response Module
	Session Module
	Error Handler Module
	Custom Modules

	Services
	Page Service

	Applications
	Directory Organization
	Application Deployment
	Application Lifecycles

	Sample: Hangman Game

	Configurations
	Configuration Overview
	Templates: Part I
	Component Tags
	Template Control Tags
	Comment Tags

	Templates: Part II
	Dynamic Content Tags

	Templates: Part III
	Dynamic Property Tags

	Application Configurations
	Page Configurations

	Control Reference : Standard Controls
	TButton
	TCheckBox
	TColorPicker
	TDatePicker
	TExpression
	TFileUpload
	THead
	THiddenField
	THtmlArea
	THyperLink
	TImageButton
	TImageMap
	TImage
	TInlineFrame
	TJavascriptLogger
	TLabel
	TLinkButton
	TLiteral
	TMultiView
	TPanel
	TPlaceHolder
	TRadioButton
	TSafeHtml
	TStatements
	TTable
	TTextBox
	TTextHighlighter
	TWizard
	Overview
	Using TWizard

	Control Reference : List Controls
	List Controls
	TListBox
	TDropDownList
	TCheckBoxList
	TRadioButtonList
	TBulletedList

	Control Reference : Validation Controls
	Validation Controls
	TRequiredFieldValidator
	TRegularExpressionValidator
	TCompareValidator
	TDataTypeValidator
	TRangeValidator
	TCustomValidator
	TValidationSummary

	Control Reference : Data Controls
	Data Controls
	TDataList
	TDataGrid
	Columns
	Item Styles
	Events
	Using TDataGrid
	Interacting with TDataGrid
	Sorting
	Paging
	Extending TDataGrid

	TRepeater

	Write New Controls
	Writing New Controls
	Composition of Existing Controls
	Extending Existing Controls

	Advanced Topics
	Authentication and Authorization
	How PRADO Auth Framework Works
	Using PRADO Auth Framework
	Using TUserManager

	Security
	Viewstate Protection
	Cross Site Scripting Prevention
	Cookie Attack Prevention

	Assets
	Asset Publishing
	Customization
	Performance
	A Toggle Button Example

	Master and Content
	Themes and Skins
	Introduction
	Understanding Themes
	Using Themes
	Theme Storage
	Creating Themes

	Persistent State
	View State
	Control State
	Application State
	Session State

	Logging
	Using Logging Functions
	Message Routing
	Message Filtering

	Internationalization (I18N) and Localization (L10N)
	Separate culture/locale sensitive data
	Configuration
	What to do with messages.xml?
	Setting and Changing Culture
	Localizing your Prado application
	Using localize function to translate text within PHP
	Compound Messages

	I18N Components
	TTranslate
	TDateFormat
	TNumberFormat
	TTranslateParameter
	TChoiceFormat

	Error Handling and Reporting
	Exception Classes
	Raising Exceptions
	Error Capturing and Reporting
	Customizing Error Display

	Performance Tuning
	Caching
	Using pradolite.php
	Changing Application Mode
	Reducing Page Size
	Other Techniques

